

Contaminant Investigation Report

Yonge Subway Extension Project Train Storage Facility Environmental Project Report Addendum

Richmond Hill, Ontario

Prepared For: Toronto Transit Commission and York Region Rapid Transit Corporation

May 2014

COMMUNITIES TRANSPORTATION

BUILDINGS

INFRASTRUCTURE

Contaminant Investigation Report

Yonge Subway Extension Project Train Storage Facility Environmental Project Report Addendum

Richmond Hill, Ontario

Prepared For Toronto Transit Commission and York Region Rapid Transit Corporation

MMM Group Limited May 2014 3277670

Contaminant Investigation Report Yonge Subway Extension Project Train Storage Facility Environmental Project Report Addendum MMM Group Limited | May 2014 | 3277670

EXECUTIVE SUMMARY

MMM Group Limited (MMM) was retained by the Toronto Transit Commission and York Region Rapid Transit Corporation to complete a contaminant investigation for a proposed 14 Train Storage Facility (TSF) in the vicinity of the Richmond Hill Centre.

The Study Area for the contaminant investigation is an area within the northern portion of the Town of Richmond Hill lands, located north of Bantry Avenue and the northern limit of Coburg Crescent (herein referred to as the "Study Area"). The northern part of the TSF is proposed to be installed within the Study Area. No drilling or sampling was completed by MMM south of Bantry Avenue, due to difficulties in locating a storm sewer, which is present in the landscaped area east of the commercial plaza.

The purpose of this contaminant investigation is to assess soil and groundwater quality within the upper 10 m of the Study Area and to provide recommendations for additional contaminant investigations to be completed at the preliminary and detail design stages, as necessary.

Several investigations have been completed for the project, focused predominantly on the geotechnical aspects. The environmental report available for MMM's review was a Contamination Overview Study (COS), completed by MMM for the project in May 2013. The Study Area of the COS was defined as a 250 m buffer zone around the footprint of the TSF.

Several areas of potential environmental concern (APECs) were identified to be present in the Study Area of the COS. This included six (6) APECs with high potential for contamination and several APECs with moderate potential for contamination. None of the identified APECs with the high potential for contamination were found to be present within a close proximity of the proposed TSF. Therefore, no additional environmental investigations were recommended by MMM to be completed for the project with respect to this classification.

In regards to APECs with moderate potential for contamination in the Study Area, the COS recommended to carry out Phase I and/or Phase II Environmental Site Assessments for those properties where property acquisitions are to take place in support of the project. Based on available information for the COS, the properties/areas likely to be impacted by the project were anticipated to be the railway corridor present to the east of the proposed TSF. For the rest of moderate APECs (i.e., where no property acquisitions is to occur), the COS recommended carrying out a soil contaminant investigation in areas where excavation may be required, to evaluate soil quality and soil management options for the TSF construction.

The fieldwork for this contaminant investigation consisted of advancing five (5) boreholes and installation of two (2) monitoring wells in the Study Area, in July 2013. The field work was completed by MMM's field staff with due regard to generally accepted environmental field

protocols, in general accordance with applicable CSA guidelines and the MOE's "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (MOE, 1996) and the protocol included in O. Reg. 153/04, as amended (July 2011).

Soil samples retrieved during drilling were collected for evaluation of the hydrogeological conditions and pre-screened for signs of potential contamination. Soil samples collected within each borehole were tested for Total Organic Vapours using a Photo-ionization Detector Mini-Rae 3000. The samples with the high vapour readings were selected for analysis of concentrations of Volatile Organic Compounds (VOCs), Petroleum Hydrocarbons (PHCs) including fractions F1 to F4 and BTEX (i.e., benzene, toluene, ethylbenzene and xylenes). Selected soil samples were submitted to a Maxxam Analytics Inc. (Maxxam) laboratory for analysis of concentrations of metals/inorganic parameters, Polycyclic Aromatic Hydrocarbons (PAHs) and VOCs.

Groundwater samples were collected by MMM from wells MW4 and MW5 on April 16, 2014. Groundwater samples were analyzed for concentrations of metals/inorganic parameters, PHCs, and VOCs.

Comparison of the soil analytical results to the Ministry of the Environment (MOE) Table 1 and 3 ICC Standards for fine textured soils showed concentration of PHC F4 of 180 μ g/g exceeding the MOE Table 1 Standard of 120 μ g/g but meet the MOE Table 3 Standard of 6,600 μ g/g. The rest of parameters meet the MOE Table 1 and 3 Standards.

The groundwater analytical results identified concentrations of molybdenum, uranium and vanadium exceeding the MOE Table 1 Standards but meeting the MOE Table 3 standards. Concentrations of molybdenum were 150 and 27 μ g/L in MW4 and MW5, above the MOE Table 1 Standard of 23 μ g/L but below the MOE Table 3 Standard of 9,200 μ g/L. Concentration of uranium of 58 μ g/L exceeded the MOE Table 1 Standard of 8.9 μ g/L in MW4; concentration of vanadium of 5.2 μ g/L was above the MOE Table 1 of 3.9 μ g/L in MW5. It is believed that elevated concentrations of molybdenum, uranium and vanadium in shallow groundwater may be natural-occurring. The rest of tested parameters (i.e., inorganic parameters, VOCs and PHCs) meet the MOE Table 1 and 3 Standards.

Based on results of the contaminant investigation, MMM provides the following recommendations:

 Soil and groundwater quality should be evaluated for the area where the Train Storage Facility is proposed to be constructed south of Bantry Avenue. This area was not evaluated in this contaminant investigation due to difficulties in locating a storm sewer in the landscaped area;

- It is recommended to develop a management plan to deal with excess materials to be generated during the construction phase of the project. This plan should develop a sampling program to collect soil confirmatory samples for evaluation of options for soil re-use, recycling or disposal, as recommended in the MOE's Guide for Best Management Practices for Soil Management (MOE, 2014) and according to applicable regulations;
- Based on results of the groundwater investigation completed for the TSF, a dewatering program is likely required for groundwater control during the TSF construction. Detailed hydrogeological investigations and geotechnical assessments should be completed to provide mitigation measures for the groundwater control during dewatering activities;
- Additional groundwater sampling should be completed in wells MW4 and MW5 and wells to be installed during future investigations in the area south of Bantry Avenue, to provide recommendations for groundwater discharge options during dewatering for the TSF construction.

TABLE OF CONTENTS

EXEC	UTIVE	SUMMARYII
1.0	INTRO	DUCTION
	1.1	Project Background1
	1.2	Project Description
	1.3	Purpose of Study2
	1.4	Scope of Work2
	1.5	Applicable Site Condition Standards
2.0	BACK	(GROUND INFORMATION
	2.1	Description of Study Area3
	2.2	Topography and Drainage4
	2.3	Physiography4
	2.4	Regional Geology4
	2.5	Study Area Geology5
	2.6	Groundwater Elevations
	2.7	Background Environmental Reports6
	2.8	Potential Contaminants of Concern7
3.0	FIELD	WORK METHODOLOGY
	3.1	Media Investigated7
	3.2	Drilling Details7
	3.3	Soil Sampling
	3.4	Field Screening Measurements8
	3.5	Installation of Monitoring Wells8
	3.6	Groundwater Sampling9
	3.7	Analytical Testing9
	3.8	Residue Management Procedures11
	3.9	Quality Assurance and Quality Control Measures11
4.0	EVAL	UATION OF RESULTS
	4.1	Soil Texture
	4.2	Results of Soil Field Screening13
	4.3	Soil Sampling Results13

	ERENCES						
STA	STANDARD LIMITATIONS						
6.4	Signatures						
6.3	Technical Support						
6.2	Qualified Person	17					
6.1	MMM Group Limited	17					
QUA	LIFICATIONS OF THE CONSULTANT	17					
DISC	CUSSION OF FINDINGS AND RECOMMENDATIONS	14					
4.4	Groundwater Sampling Results	13					
	DISC QUA 6.1 6.2 6.3 6.4 STA	 6.2 Qualified Person 6.3 Technical Support 6.4 Signatures STANDARD LIMITATIONS 					

LIST OF FIGURES

(following text)

Figure 1. Study Area Location Plan	
------------------------------------	--

Figure 2. Plan of Boreholes and Monitoring Wells

LIST OF TABLES

		Following text or Page Number
Table 1.	Depth to Groundwater in Study Area	6
Table 2.	Sampling Analysis Plan for Soil Samples	
Table 3.	Summary of Analytical Results for Soil Texture	
Tables B1 to B7	Summary Tables with Soil Analytical Results	
Tables C1 to C7	Summary Tables with Groundwater Analytical I	Results

APPENDICES

APPENDIX A – Borehole Logs

- APPENDIX B Certificate of Analysis for Soil Samples
- APPENDIX C Certificate of Analysis for Groundwater Samples
- APPENDIX D Standard Limitations

1.0 INTRODUCTION

MMM Group Limited (MMM) was retained by the Toronto Transit Commission and York Region Rapid Transit Corporation to complete a contaminant investigation for a proposed 14 Train Storage Facility (TSF) in the vicinity of the Richmond Hill Centre. The TSF is proposed to be built approximately between 0.6 km north of High Tech Road and 0.1 km north of Edgar Avenue and 25 m west of the existing CN/GO railway corridor on lands currently owned by the Town of Richmond Hill.

The Study Area for the contaminant investigation is an area within the northern portion of the Town of Richmond Hill lands, located north of Bantry Avenue and the northern limit of Coburg Crescent (herein referred to as the "Study Area"). The northern part of the TSF is proposed to be installed within the Study Area (**Figure 1**). No drilling or sampling was completed by MMM south of Bantry Avenue, due to difficulties in locating a storm sewer, which is present in the landscaped area east of the commercial plaza.

Several investigations have been completed for this project to date. Golder Associates Ltd. (Golder) has completed several preliminary geotechnical investigations for the project since 2008. A Contamination Overview Study and a Groundwater Assessment were completed by MMM for the project in May 2013 and April 2014, respectively. Selected sections of these investigations have been included in this report.

1.1 **Project Background**

This investigation was completed for the Yonge Subway Extension (YSE) project. The objective of the project is to extend the existing Yonge Subway from its current terminus at Finch Station in the City of Toronto to approximately Highway 7 (Richmond Hill Centre) in the Town of Richmond Hill. In 2009-2010, the Toronto Transit Commission (TTC) reviewed the subway rail yard needs for the Yonge Subway to the year 2030, and determined that the train car fleet would grow from 62 trains to a total of 88 trains. This in turn, led to the conclusion that an additional 14-train storage capacity would be required for overnight storage of a portion of the additional vehicles, and a yard property should be purchased in the vicinity of the Richmond Hill Centre to accommodate the fleet growth beyond the year of 2030.

The requirement for the train storage at the north end of the Yonge line was identified by the TTC after the original YSE Transit Project Assessment Process (TPAP) was completed and approved by the Ministry of Environment (MOE). The implementation of the Train Storage Facility is subject to an Addendum to the previous assessment under the TPAP and that assessment is documented under a separate cover in an Environmental Project Report (EPR)

Addendum. A detailed project history is provided in the draft Environmental Project Report Addendum dated April 2014.

It is understood that underground portions of the YSE will be constructed using tunnelling with the tunnel ingress point located at Richmond Hill Centre in the middle of a parking lot. The TSF, however, will be constructed using a cut-and-cover method (MMM (a), April 2014).

1.2 **Project Description**

The proposed Train Storage Facility requires an underground extension of the Yonge Subway of approximately 800 m beyond the end of the approved Richmond Hill Centre Station, northerly along the west side of the CN rail corridor. The storage facility itself would be comprised of three parallel tracks to accommodate additional storage capacity, side-by-side in a triple box structure along the west side of the GO/CN rail corridor. The box structure would be approximately 21 m wide and 6 m tall, generally located at a depth from surface of approximately 14-20 m (top of structure/ bottom of structure). The structure would be approximately 700 m long.

In addition to the underground vehicle storage facility, a number of supporting surface facilities will be required, including maintenance operators and electrical services building, a ventilation shaft and drop shaft, an Emergency Exit Building, and a parking lot for 25-30 spaces.

1.3 Purpose of Study

The purpose of this contaminant investigation is to assess soil and groundwater quality within the upper 10 m of the Study Area and to provide recommendations for additional contaminant investigations to be completed at the preliminary and detail design stages, as necessary.

1.4 Scope of Work

The scope of work for the study included the tasks described below.

• Background Information Review:

This included reviewing geological, topographical and physiographic maps and environmental background reports available for the Study Area and surrounding areas.

• Subsurface Investigation:

This included advancement of five (5) boreholes and installation of two (2) monitoring wells by a drilling contractor in the Study Area under MMM's supervision in July 2013.

• Sampling and Analyses:

This included collection and submission of soil and groundwater samples to Maxxam Analytics Inc. laboratory (Maxxam). Soil samples were collected by MMM staff during the borehole advancement in July 2013. Representative soil samples were submitted to Maxxam for analysis of soil texture; inorganic parameters; concentrations of metals; petroleum hydrocarbons (PHCs) including fractions F1 to F4, benzene, toluene, ethylbenzene and xylene (BTEX); volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs).

Groundwater samples were collected by MMM Group and submitted to Maxxam for analysis of inorganic parameters, metals, PHCs (F1 to F4 and BTEX) and VOCs in April 2014.

• Data Assessment and Reporting:

Results of soil and groundwater analyses were compared to Tables 1 and 3 of the MOE Site Specific Standards for fine-textured soils. Results of the background information review, drilling details and analytical results are presented in this report.

1.5 Applicable Site Condition Standards

The contaminant investigation was undertaken in general accordance with Canadian Standards Association (CSA) Standard Z769-00 (Phase II ESA) pursuant to Ontario Regulation 153/04 (O.Reg. 153/04), as amended. It should be noted that this investigation is not in support of a Record of Site Condition pursuant to O. Reg. 153/04, as amended.

Generic site condition standards established by MOE in the document titled "Soil, Groundwater and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act" (MOE, April 2011) (the "Standard") were used to assess soil and groundwater quality in the Study Area. The Study Area is not a sensitive site as defined in O. Reg. 153/04 and is municipally serviced. Therefore, MOE Table 3 Standards established for non-potable groundwater conditions for industrial/commercial/community (ICC) land uses with fine-textured soil were considered to be applicable for the Study Area.

For comparison purposes, results of this assessment were also compared to MOE Table 1 Standards, since soils that MOE Table 1 Standards have no off-site disposal/re-use restrictions.

2.0 BACKGROUND INFORMATION

2.1 Description of Study Area

As described in Section 1.0, the Study Area is located between north of Bantry Avenue and the northern limit of Coburg Crescent, and 25 m west of the existing CN/GO railway corridor. The

Study Area is surrounded primarily by residential developments. The CN/GO railway corridor is present to the east of the Study Area (**Figure 1**).

2.2 Topography and Drainage

The topography within the Study Area is flat to gently sloping. Based on design drawings provided for the Train Storage Facility (MMM, January 2014), the ground surface elevations along the TSF alignment increase from approximately 206 metres above sea level (masl) to approximately 209 masl from Bantry Avenue to near Coburg Crescent.

The Study Area is located within the Don River Watershed. The East Don River crosses Yonge Street approximately 1.5 km south of the Highway 407 interchange, with a tributary crossing directly though (underneath) the interchange. Pomona Mills Creek, enclosed in an underground pipe, crosses the TSF from east to west before it flows outside of the railway's Right of Way to the west and then flows south to join the East Don River.

Stormwater run-off within the Study Area is from urban and natural areas in transition to urban land use. Stormwater is conveyed through storm sewers in the urban areas and ditches in the natural areas, respectively. All stormwater is eventually discharged into surface water courses draining into the East Don River. On the regional scale, water from the Don River is eventually discharged into Lake Ontario.

2.3 Physiography

According to Chapman and Putnam's "The Physiography of Southern Ontario, Third Edition" (1984), the Study Area is located within the physiographic region known as the Peel Plain. The Peel Plain is a level-to-undulating tract of clay soils and covers an area of 300 square miles across the central portions of the Regional municipalities of York, Peel and Halton. The ground surface within the Peel Plain slopes toward Lake Ontario with elevations ranging between 152 to 213 masl. Deep valleys have been cut across this plain by rivers and water courses. Much of the Peel Plain has been modified by a veneer of clay soils, which occasionally, when deep enough, have been observed to be varved. The water supply within the Plain is generally poor and the high degree of evaporation from the deforested clay surface limits the adequate recharge of groundwater (Chapman and Putnam, 1984).

2.4 Regional Geology

According to the Ontario Geological Survey mapping "The Surficial Geology of Southern Ontario" (OGS, 2010), glaciolacustrine deposits of silt and clay with minor sand content are

present within the Study Area. The glaciolacustrine deposits generally form a thin veneer over the underlying deposits, although they can be several meters thick. The youngest deposits present beneath the glaciolacustrine deposits and sometime exposed at the surface in the watershed of Don River is *Halton Till*. It is a sandy silt to clayey silt till interbedded with silt, clay, sand and gravel. The Halton Till is a 3 to 6 m thick aquitard unit (TRCA, 2009).

Deposits that correlate to the *The Oak Ridges Moraine* (ORM) may potentially be present in the Study Area. The ORM sediments are arranged from coarse to fine in a down flow direction and vertically up section. Rhythmically interbedded fine sands and silts are the predominant sediments, but coarse, diffusely-bedded sands and gravel may also be present locally. The ORM aquifer sits on the Newmarket Till and lower sediments (TRCA, 2009).

The Newmarket (Northern) Till is a dense silty sand diamicton up to 60 m thick and has been traced to be present beneath the ORM unit. It contains 2-5 cm thick interbeds of sand and silt, boulder pavements, fractures and joints. Discontinuous sand beds up to 1-2 m thick may also be present in this unit (TRCA, 2009). The Newmarket Till is an over-consolidated aquitard unit.

The underlying bedrock in the Study Area is mapped as grey to black shale interbedded with limestone and siltstone layers of the Georgian Bay Formation and limestone of the Simcoe Group (OGS, 1991).

2.5 Study Area Geology

As described in Section 1.0, several preliminary geotechnical investigations were completed by Golder for the project. During these investigations, nested wells BH 126A/B and 128 A/B were installed in the southern and northern portions of the proposed TSF (**Figure 2**).

The borehole logs from the groundwater and the contaminant investigations indicate that a 1.4 to 3.7 m thick fill is present in the central and northern portion of the proposed TSF below the topsoil layer. The native soils in the Study Area consist of clayey silt to silty clay till, sandy silt to silt, sand to silty sand, silty clay to clayey silt and sand and gravel.

The till seems to be interbedded with deposits of silty clay to clayey silt at shallow depths down to 13.3 m in the northern portion of the Study Area. Silty clay to clayey silt deposit was found to be present at the depth of 19.4 to 22.3 mbgs and below 20.9 mbgs in the northern portion of the Study Area. Deposits of sandy silt, sand and silt and silt deposits are distinct at the depths of 4.9 to 8.7 mbgs, 11.7 to 14.9 mbgs, 27.0 to 29.9 mbgs and below 31.2 mbgs in the central portion of the Study Area.

Deposits of sand to silty sand were encountered at the shallow depths in the northern portion of the Study Area. These deposits are also present at the depths of 8.7 to 11.7 mbgs and at the depth of 26.0 to 27.0 mbgs in the central portion of the Study Area.

2.6 Groundwater Elevations

Static groundwater levels at Monitoring Wells MW4 and MW5 were measured by MMM in March and April 2014. Information from the monitoring events is presented in **Table 1**. As can be seen from **Table 1**, the shallow groundwater is present at depths of 7.6 to 8.3 mbgs within the Study Area. Additional monitoring wells are required to be installed to understand the flow direction of shallow groundwater in the Study Area.

Monitoring Well ID	Well Depth (mbgs)	Depth to GW (mbgs) – March 27, 2014	GW Elev (masl) – March 27, 2014	Depth to GW (mbgs) – April 16, 2014	GW Elev (masl) – April 16, 2014
MW4	9.75	8.07	200.02	7.60	200.49
MW5	11.28	8.32	200.30	7.87	200.74

Table 1: Depth to Groundwater in Study Area

2.7 Background Environmental Reports

Several investigations have been completed for the project, focused predominantly on the geotechnical aspects. The environmental report available for MMM's review was a Contamination Overview Study (COS), completed by MMM for the project in May 2013. The Study Area of the COS was defined as a 250 m buffer zone around the footprint of the TSF. The purpose of the COS was to identify properties/areas with actual and/or potential contamination that may impact the design and construction of the TSF. The COS consisted of reviewing environmental records and completing a site reconnaissance.

Several areas of potential environmental concerns (APECs) were identified to be present in the Study Area of the COS. This included six (6) APECs with high potential for contamination and several APECs with moderate potential for contamination. None of the identified APECs with the high potential for contamination were found to be present within a close proximity of the proposed TSF. Therefore, no additional environmental investigations were recommended by MMM to be completed for the project with respect to this classification.

In regards to APECs with moderate potential for contamination in the Study Area, the COS recommended to carry out Phase I and/or Phase II Environmental Site Assessments for those

6

properties where property acquisitions are to take place in support of the project. Based on available information for the COS, the properties/areas likely to be impacted by the project were anticipated to be the railway corridor present to the east of the proposed TSF. For the rest of moderate APECs (i.e., where no property acquisitions is to occur), the COS recommended carrying out a soil contaminant investigation in areas where excavation may be required, to evaluate soil quality and soil management options for the TSF construction.

2.8 Potential Contaminants of Concern

As described above, the COS completed for the project identified areas with potential areas for contamination. Potential contaminants of concern for this investigation may include metals/inorganic parameters, PHCs (F1-F4 and BTEX), PAHs and VOCs.

3.0 FIELD WORK METHODOLOGY

The field work for the contaminant investigation consisted of advancing five (5) boreholes and installation of two (2) monitoring wells in the Study Area (**Figure 2**), in July 2013. The field work was completed by MMM's field staff with due regard to generally accepted environmental field protocols, in general accordance with applicable CSA guidelines and the MOE's "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario (MOE, 1996) and the protocol included in O. Reg. 153/04, as amended (July 2011).

3.1 Media Investigated

Both soil and groundwater quality was investigated within the Study Area as part of this contaminant investigation. The soil quality was assessed through recovery of soil samples during the borehole advancement. Soil samples were collected at regular depth intervals to allow the characterization of physical soil properties and signs of potential contamination, documented in the boreholes logs. The groundwater samples were collected in monitoring wells MW4 and MW5 in April 2014. Detailed description of analyses completed for soil and groundwater samples is presented in Section 3.7.

3.2 Drilling Details

The borehole advancement and well installation for this investigation was completed by Walker Drilling Ltd., a certified well drilling contractor, under MMM's supervision on July 24 and 25, 2013. In the initial scope of work, eleven (11) boreholes were planned to be advanced and five (5) out of eleven monitoring wells were planned to be installed in vicinity of the TSF. However, only boreholes north of Bantry Avenue were advanced due to difficulties locating a storm sewer

south of Bantry Avenue. The original names were kept for boreholes and wells advanced north of Bantry Avenue.

All five (5) boreholes BH4, MW4, BH5, MW5 and BH6 were advanced using a track mounted drilling rig Geoprobe 7822DT, equipped with hollow stem augers. Soil samples were retrieved from each borehole at semi-continuous intervals of 0.6 m (2 feet) using split spoons.

3.3 Soil Sampling

Soil samples retrieved during drilling were collected for evaluation of the hydrogeological conditions and pre-screened for signs of potential contamination. Soil samples were recovered from split spoons and placed in labeled polyethylene bags for the field screening. For screening purposes, a portion of each sample was maintained in an undisturbed condition and the balance of the sample was broken up into small pieces to release soil vapours.

The vapour readings were measured and selected soil samples were jarred in laboratory supplied bottles for submission to the Maxxam Analytics Inc. (Maxxam) laboratory, located in Mississauga, Ontario. For samples considered for BTEX analysis, the undisturbed portion of the sample was recovered from each bag and carefully placed in a laboratory-prepared vial containing a measured amount of methanol.

3.4 Field Screening Measurements

Soil samples collected within each borehole were tested for TOVs using a Photo-ionization Detector Mini-Rae 3000. The purpose of the screening was to evaluate whether combustible (e.g., petroleum) or volatile (e.g., solvents) compounds are present in the recovered samples. The TOV readings were gathered at the end of each day once the samples had acclimatized to indoor ambient temperature. The TOV readings for all collected soil samples are presented in the borehole logs (**Appendix A**).

The soil samples with the higher vapour readings were selected for analysis of concentrations of VOC, PHCs and BTEX. Screened samples were submitted to Maxxam's lab under a chain of custody.

3.5 Installation of Monitoring Wells

Installation of monitoring wells MW4 and MW5 was completed as follows:

 Each monitoring well was constructed using a 51 mm diameter well screen and Schedule 40 PVC riser pipe;

- The well screen intervals were chosen to be 1.5 m (5 feet) long with a No. 10 slot size screen;
- Sand pack was placed around the well screen to the outer diameter of 20 cm and the sand pack was extended to 0.3 m above the top of the screen;
- A bentonite seal was then placed around the PVC riser pipe up to within 0.3 m of the ground surface;
- Well caps were placed on the top of PVC wells; and
- Monitoring wells were completed using steel monuments.

Installation of monitoring wells was completed in accordance with O. Reg. 903. Groundwater levels were observed in the monitoring wells upon completion and were measured upon return site visits on March 27, 2014 and April 16, 2014.

3.6 Groundwater Sampling

MMM collected groundwater samples in monitoring wells MW4 and MW5 on April 16, 2014. To collect samples representative of the screened formation, each monitoring well was purged at least three (3) volumes of the well volume. The water quality parameters, including pH, temperature, electrical conductivity and concentrations of total dissolved solids, were monitored using a YSI water quality meter (Model 556) during the well purging. The water levels in the wells were allowed to recover prior to collecting groundwater samples. The groundwater samples were then collected in laboratory-supplied bottles, placed on ice and delivered to Maxxam's laboratory the same day.

3.7 Analytical Testing

Soil samples collected during advancement of boreholes on July 24 and 25, 2013 were selected for the chemical analysis using olfactory information in the field notes, targeted sampling intervals and measured TOV readings. A plan of soil samples selected for the chemical analyses is shown in **Table 2**.

It should be noted that the borehole BH6 was originally named as "BH7" and changed to "BH6" at later stages of the contaminant investigation. References in Certificates of Analyses for soil samples collected at BH6 refer to the old name of this borehole (i.e., BH7).

The soil samples were put on ice and delivered to Maxxam laboratory the same day. Maxxam is a laboratory accredited by the Canadian Association for Laboratory Accreditation (CALA) for the requested soil and groundwater analyses.

Groundwater samples were collected following recovery of purged water in MW4 and MW5 on April 16, 2014. These samples were submitted for analyses of metals, inorganic parameters, VOC and PHCs (F1 to F4 and BTEX). Due to high silt content and limited recovery of groundwater in MW4 and MW5 following purging, analysis for concentrations of mercury in groundwater was not completed.

Sample ID	Sample Depth (mbgs)	Field Vapour Readings ¹	Metals and Inorganics	PHCs/ BTEX	VOCs	PAHs
	0-0.6	0	Х			
	2.2-2.8	0			Х	
BH6	3-3.6	0	Х			
	4.1-4.4	0		Х		
	4.5-5.1	0				Х
	0-0.6	0		Х		Х
BH4	0.7-1.3	0	Х			
DП4	2.2-2.5	0.2			X ²	
	3.8-4.3	0	Х			
	0.7-1.3	0	X ²			
BH5	1.5-2.1	0		Х		Х
BHJ	6.4-6.7	0			Х	
	8.3-8.9	0	X ²			
	0-0.6	4.1		Х	Х	
	0.7-1.3	4.1	Х			
MW4	1.5-2.1	0.8				X ²
	3.8-4	1.3				X ²
	8.3-8.7	0	Х			
	0.7-1.3	0	Х			
	2.5-2.8	2			Х	Х
MW5	3-3.6	0.8				Х
	3.8-3.9	1.5		Х		
Notes:	8.3-8.9	0	Х			

Table 2: Sampling	Analysis Plan	for Soil Samples
-------------------	---------------	------------------

Notes:

1. Total Organic Vapours were measured using a PID calibrated to isobutylene (ppm);

2. A duplicate sample was collected at this location.

mbgs = meters below ground surface

3.8 Residue Management Procedures

Soil cuttings from drilling operations were collected and contained in one drum and stored within the Study Area. Minimal volumes of purge water were generated and this water was added to the void spaces within the soil drums. Equipment wash fluids were contained and removed by the drilling contractor as part of the drilling scope of work.

3.9 Quality Assurance and Quality Control Measures

Quality assurance and quality control of the soil and groundwater samples was monitored and maintained in a number of ways:

- The field investigations followed MMM' standard operating procedures for soil and groundwater sampling;
- Samples were given unique identifications as they were collected, identifying the project number, date, sampling location and depth. The sample numbers were recorded in field notes for each location;
- Sample containers provided by the laboratory were used and laboratory requirements for sample size, container type, preservatives and filtering were followed;
- Split spoons were washed by the drilling contractor between drilling intervals in a solution containing Alconox to prevent cross-contamination of the recovered soil samples;
- Nitrile gloves were used by the MMM's field technician while handling soil samples, and were changed for each sample;
- Non-disposable sampling equipment was cleaned using Alconox, following each use;
- A chain-of-custody form was filled out for the samples prior to submitting the samples to the laboratory. The chain-of-custody documented sample movement from collection to receipt at the laboratory and provided sample identification, requested analysis and conditions of samples upon arrival at the laboratory (e.g., temperature, container status, etc.);
- Soil samples were randomly selected by the MMM field staff for duplicate testing. For the requested analyses, one duplicate sample for analysis was selected for every five (5) samples submitted to the lab;
- Field monitoring equipment was calibrated according to manufacture requirements prior to the site visit including on-site calibration;

Samples were randomly selected by the laboratory for internal Quality Assurance checks including blanks and matrix spikes. Generally, one sample for every ten samples submitted was checked. For each parameter, there is an acceptable upper and lower limit for the measured concentration of the parameter. Measured concentrations of analyzed samples must fall within the upper and lower acceptable limits in order for the sample to be valid. If a result exceeds the upper or lower acceptable limits, the sample must be re-analyzed. Upper and lower acceptable limits for each analyzed parameter is presented in Certificates of Analysis (Appendix B and C).

4.0 EVALUATION OF RESULTS

This section presents results of the soil analysis and the sample QA/QC program completed for the Study Area. For the purposes of this study, all soil samples were compared to the following set of standards:

- Table 1 of the MOE Site Condition Standards (SCS) under Ontario Regulation 153/04, as amended. MOE Table 1 SCS are suitable for Full Depth Background Site Conditions for all property uses and soil textures. Soils that meet MOE Table 1 SCS have no off-site disposal/re-use restrictions; and
- Table 3 of the MOE SCS under Ontario Regulation 153/04 as amended. Table 3 SCS are suitable for Generic Conditions for all property uses and soil textures in non-potable groundwater conditions. The SCS applicable for the Study Area are Table 3 standards for industrial/commercial/community (ICC) land uses (i.e., the train storage facility) and fine-textured soils. Results of the soil texture analysis are provided below.

4.1 Soil Texture

Selected soil samples were submitted to Maxxam for the soil texture analysis. The results have indicated that the soils within the Study Area have a fine texture, as shown in **Table 3** below.

Borehole ID Depth (mbgs) Maxxam work order Sampling Date	Units	BH4(10-12') 3.0 – 3.7 SK6012 25/07/2013	MW4(2'.5-4'.5) 0.7 – 1.3 SK6022 25/07/2013
Grain Size		FINE	FINE
Sieve - #200 (<0.075mm)	%	61	71
Sieve - #200 (>0.075mm)	%	39	29

Table 3: Summary of Analytical Results for Soil Texture

4.2 Results of Soil Field Screening

As described in Section 3.4, soil samples collected within each borehole were tested for TOVs using a PID. The results of the soil field screening indicated that TOV readings for boreholes advanced within the Study Area ranged between 0.0 parts per million (ppm) to 4.1 ppm, with background concentrations in ambient air being zero.

The TOV readings obtained during the field screening indicate that vapour concentrations are low. This is consistent with visual and olfactory observations. At each borehole location, a sample representing the highest PID reading was submitted for analysis of concentration of PHC and/or BTEX in soil samples. PID readings were also used in choosing samples for the VOC analyses. The highest reading of 4.1 ppm was in the soil sample collected at the depth of 0 mbgs to 1.3 mbgs in MW4.

4.3 Soil Sampling Results

Detailed tables with soil sampling results collected during this investigation are presented in **Appendix B**. This includes results for metals and inorganic parameters (**Table B1**), PHCs (**Table B2**) and PAHs (**Table B3**) and VOCs (**Table B4**).

Comparison of the soil analytical results to the MOE Table 1 and 3 ICC Standards for fine textured soils showed concentration of PHC F4 of 180 μ g/g exceeding the MOE Table 1 Standard of 120 μ g/g but meeting the MOE Table 3 Standard of 6,600 μ g/g in the sample collected in MW4 at the depth of 0 to 0.6 m. The rest of parameters meet the MOE Table 1 and 3 Standards. A Certificate of Analysis for collected soil samples is provided in **Appendix B**.

4.4 Groundwater Sampling Results

The groundwater samples were analyzed for metals, inorganic parameters, PHCs (F1 to F4 and BTEX) and VOCs. Analytical results are presented in the following tables: metals and inorganic parameters (**Table C1**), PHCs/BTEX (**Table C2**) and VOCs (**Table C3**). A Certificate of Analysis for collected groundwater samples is provided in **Appendix C**.

Comparison of the groundwater analytical results to the MOE Table 1 and 3 Standards identified concentration of molybdenum, uranium and vanadium exceeding the MOE Table 1 Standards but meet the MOE Table 3 standards. Concentrations of molybdenum were 150 and 27 μ g/L in MW4 and MW5, above the MOE Table 1 Standard of 23 μ g/L but below the MOE Table 3 Standard of 9,200 μ g/L. Concentration of uranium of 58 μ g/L exceeded the MOE Table 1 Standard of 8.9 μ g/L in MW4; concentration of vanadium of 5.2 μ g/L was above the MOE Table

Contaminant Investigation Report Yonge Subway Extension Project Train Storage Facility Environmental Project Report Addendum MMM Group Limited | May 2014 | 3277670

1 Standard of 3.9 μ g/L in MW5. It is believed that elevated concentrations of molybdenum, uranium and vanadium in shallow groundwater may be naturally-occurring.

5.0 DISCUSSION OF FINDINGS AND RECOMMENDATIONS

The following is a summary of results obtained during this contaminant investigation:

- The Study Area for a contaminant investigation is an area within a 250-m radius of the proposed northern portion of the TSF, located approximately 0.2 m south of Bantry Road and 0.1 km north of Edgar Avenue. The Study Area is surrounded by residential lands and commercial properties. The CN/GO railway corridor is present to the east of the Study Area;
- The shallow groundwater is present at depth of 7.6 to 8.3 mbgs in the Study Area. Additional monitoring wells are required to be installed to understand the flow direction of shallow groundwater;
- A Contamination Overview Study (COS) completed by MMM for the project in May 2013 identified areas of potential environmental concerns (APECs) within the Study Area;
- None of the identified APECs with the high potential for contamination were found to be present within a close proximity of the proposed TSF. Therefore, no additional environmental investigations were recommended by MMM to be completed for the project with respect to this classification;
- In regards to APECs with moderate potential for contamination, the COS recommended to carry out Phase I and/or Phase II Environmental Site Assessments for those properties where property acquisitions are to take place in support of the project. Based on available information, the properties/areas likely to be impacted by the project is the railway corridor present to the east of the proposed TSF;
- For the rest of moderate APECs (i.e., where no property acquisitions is to occur), the COS recommended carrying out a soil contaminant investigation in areas where excavation may be required, to evaluate soil quality and soil management options for the TSF construction;
- The borehole advancement was completed by Walker Drilling Ltd., a certified well drilling contractor, under MMM's supervision on July 24 and 25, 2013. Soil samples retrieved during drilling were collected for evaluation of the hydrogeological conditions and prescreened for signs of potential contamination;
- Soil samples collected within each borehole were tested for Total Organic Vapours (TOVs) using a Photo-ionization Detector (PID) Mini-Rae 3000. The samples with the higher vapour readings were selected for analysis of concentrations of PHCs (F1 to F4 and BTEX).

Selected soil samples were submitted to a Maxxam laboratory for analysis of concentrations of metals/inorganic parameters, PHCs and VOCs;

- Groundwater samples were collected by MMM on April 16, 2014. Groundwater samples from MW4 and MW5 were analyzed for concentrations of metals/ inorganic parameters, PHCs, and VOCs;
- Comparison of the soil analytical results to the MOE Table 1 and 3 ICC Standards for fine textured soils showed concentration of PHC F4 of 180 µg/g exceeding the MOE Table 1 Standard of 120 µg/g but meeting the MOE Table 3 Standard of 6,600 µg/g, in the sample collected in MW4 at the depth of 0 to 0.6 m. The rest of parameters are below the MOE Table 1 and 3 Standards;
- Comparison of the groundwater analytical results to the MOE Table 1 and 3 Standards identified concentration of molybdenum, uranium and vanadium exceeding the MOE Table 1 Standards but meeting the MOE Table 3 standards. Concentrations of molybdenum were 150 and 27 µg/L in MW4 and MW5, above the MOE Table 1 Standard of 23 µg/L but below the MOE Table 3 Standard of 9,200 µg/L. Concentration of uranium of 58 µg/L exceeded the MOE Table 1 Standard of 8.9 µg/L in MW4; concentration of vanadium of 5.2 µg/L was above the MOE Table 1 Standard of 3.9 µg/L in MW5. It is believed that elevated concentrations of molybdenum, uranium and vanadium in shallow groundwater may be natural-occurring;

Based on results of this contaminant investigation, MMM provides the following recommendations:

- Soil and groundwater quality should be evaluated for the area where the Train Storage Facility is proposed to be constructed south of Bantry Avenue. This area was not evaluated in this contaminant investigation due to difficulties in locating a storm sewer in the landscaped area;
- It is recommended to develop a management plan to deal with excess materials to be generated during the construction phase of the project. This plan should develop a sampling program to collect soil confirmatory samples for evaluation of options for soil re-use, recycling or disposal, as recommended in the MOE's Guide for Best Management Practices for Soil Management (MOE, 2014) and according to applicable regulations;
- Based on results of the groundwater investigation completed for the TSF, a dewatering program is likely required for groundwater control during the TSF construction. Detailed

hydrogeological investigations and geotechnical assessments should be completed to provide mitigation measures for the groundwater control during dewatering activities;

Additional groundwater sampling should be completed in wells MW4 and MW5 and wells to be installed during future investigations in the area south of Bantry Avenue, to provide recommendations for groundwater discharge options during dewatering for the TSF construction.

6.0 QUALIFICATIONS OF THE CONSULTANT

6.1 MMM Group Limited

For six decades, MMM Group Limited has offered comprehensive consulting services in design, planning, project management, contract administration and construction inspection services in the environmental engineering, municipal engineering, urban development and recreational development fields. The firm employs over 2,000 professional, technical and administrative staff, in offices across Canada with expertise in all facets of the environmental field. The Environmental Management Department (EMD) specializes in conducting Phase One, Two and Three Environmental Site Assessments, hazardous materials assessment, removal of underground storage tanks, hydrogeological and groundwater investigations and site remediation.

6.2 Qualified Person

The contaminant investigation was supervised by **Ms. Natalia Codoban, M.Eng., P.Eng.**, Hydrogeologist/Environmental Engineer and a Project Manager with MMM. Ms. Codoban has an academic background in Earth/Environmental Sciences and Geology, and Environmental Engineering. She has over nine (9) years of experience in completing and managing environmental and hydrogeological investigations. Natalia has provided expertise to numerous environmental investigations, contaminated site assessments (brownfields), clean water and contaminant groundwater investigations, Contamination Overview Studies, Preliminary Site Screenings, studies for development impact assessment, on-site servicing, watershed studies and water balance evaluation, water resources development and protection, dewatering and hydrogeological projects. Natalia is a Qualified Person (QP) under O. Reg. 153/04, as amended.

The contaminant investigation report was reviewed for quality assurance/quality control purposes by **Mr. Murray Gomer, M.Sc., P.Geo.**, who is a Senior Hydrogeologist/Senior Project Manager and an Associate with MMM. Mr. Gomer has more than 32 years of experience as a Hydrogeologist and Project Manager in a wide range of overburden and bedrock terrain and geological conditions. Relevant experience includes: development impact assessment, on-site servicing, watershed studies and water balance evaluation, water resources development and protection, dewatering, waste management plans, siting and monitoring for municipal landfills, industrial and radioactive waste sites, contaminated sites assessment (brownfields), remedial action, expert witness (OMB), and environmental assessment under the Ontario Environmental

Assessment Act, Environmental Protection Act and under the Canadian Environmental Assessment Act. Murray is a QP under O. Reg. 153/04, as amended.

6.3 Technical Support

The field work and preparation of the technical report was completed by **Ms. Sanam Rahmanian**, **M.Sc.**, an Environmental Scientist working with MMM. Sanam has over three (3) years of experience in completing soil and groundwater sampling and monitoring, supervising drilling contractors for borehole advancement and installation of monitoring wells and preparing technical reports. Prior to working with MMM, Sanam inspected numerous surface water/ groundwater monitoring stations, prepared field reports and assisted in conducting a wide variety of environmental/engineering projects, including soil remediation projects, environmental site assessments and Designated Substance Surveys.

6.4 Signatures

Report Authored By:

Sanam Rahmanian, M.Sc. Environmental Scientist

Natalia Codoban, M.Eng, P. Eng. Hydrogeologist/ Environmental Engineer

QA/QC Completed By:

0 MURRAY D. GOMER PRACTISING MEMBER 1296

GE

Murray Gomer, M.Sc., P.Geo. Senior Hydrogeologist

> Contaminant Investigation Report Yonge Subway Extension Project Train Storage Facility Environmental Project Report Addendum MMM Group Limited | May 2014 | 3277670

7.0 STANDARD LIMITATIONS

Standard conditions and limitations are presented in **Appendix D** as they apply to this report.

8.0 **REFERENCES**

Chapman, L.J. and Putnam, D.F. 1984. *The Physiography of Southern Ontario, 3rd Edition. Ontario Geological Survey, Special Vol.2, 169p.*

Canadian Standards Association. March 2000. CSA Standard Z769-00 - Phase II Environmental Site Assessment.

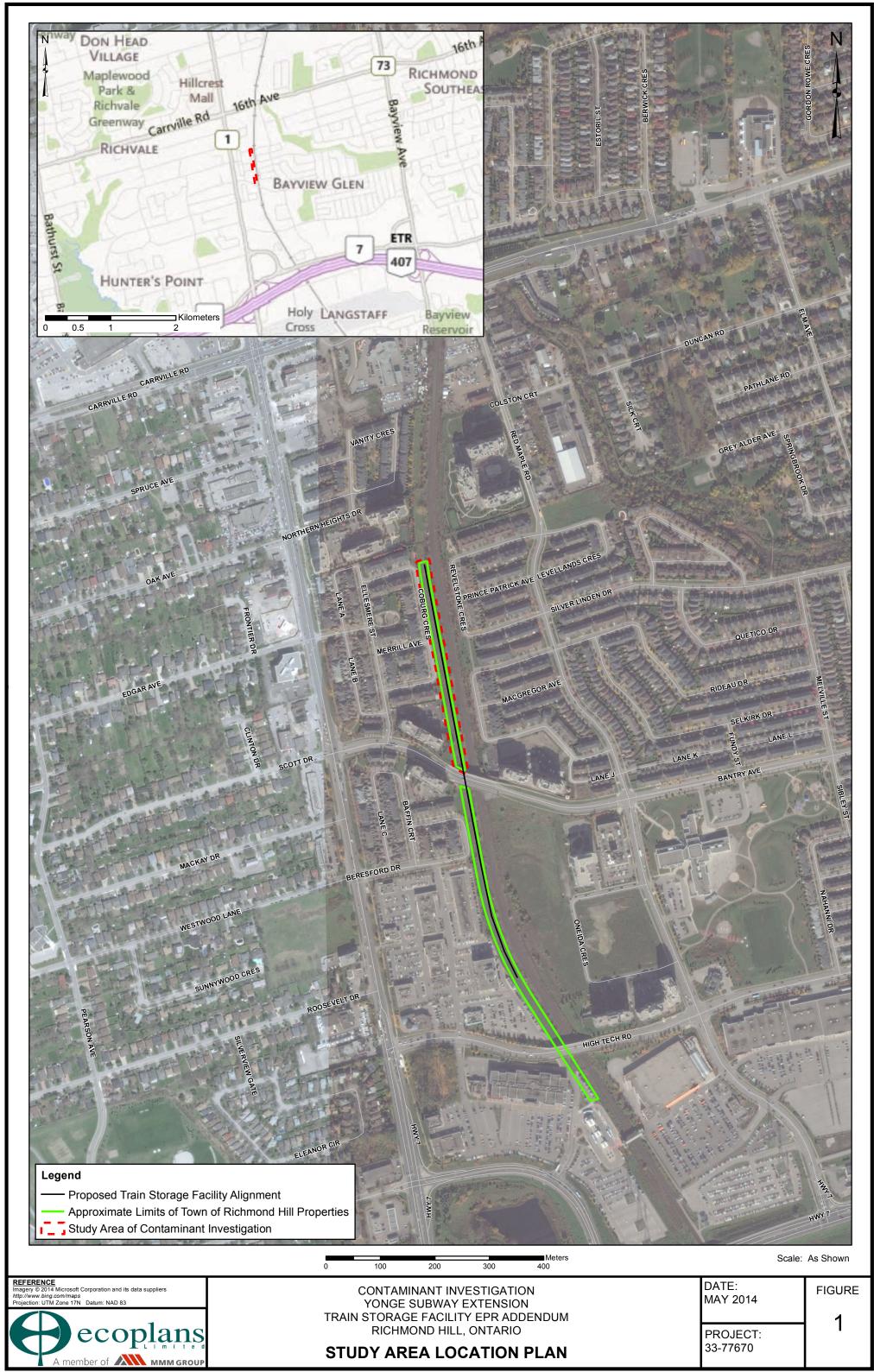
Ecoplans, a member of MMM Group Limited. May 2013. *Contamination Overview Study for Yonge Subway Extension TPAP*. High Tech Road to Oak Avenue, Town of Richmond Hill, Ontario.

MMM Group Limited. January 2014. *Proposed Train Storage Facility, Yonge Subway Extension Environmental Project Report Addendum.* Plan and Profile Design Drawings, from Richmond Hill Centre Station to Station 8+000.

MMM Group Limited (a). April 2014. Draft Environmental Project Report Addendum for Train Storage Facility. Yonge Subway Extension. Transit Project Assessment Process.

MMM Group Limited (b). April 2014. *Groundwater Assessment Report for Train Storage Facility.* Yonge Subway Extension Project. Environmental Project Report Addendum.

Ontario Geological Survey 2010. *Surficial Geology of Southern Ontario; Ontario Geological Survey, Miscellaneous Release – Data 128.*


Ontario Geological Survey, 1991. *Bedrock Geology of Ontario; Ontario Geological Survey, Miscellaneous Release–Data 126* - Revision 1, Scale 1:250,000.

Ontario Ministry of Environment and Energy. 1996 (Version 1.1). Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.

Ontario Ministry of the Environment. April 2011. Soil, Groundwater and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act. Document PIBS#7382e01.

Ontario Ministry of the Environment. January 2014. *Management of Excess Soil – A Guide for Best Management Practices.*

Toronto and Region Conservation Authorities. 2009. *Don River Watershed Plan. Geology and Groundwater Resources – Report on Current Conditions. Accessed on-line at <u>http://trca.on.ca/dotAsset/55381.pdf</u>*

I:\Ecoplans\03 - Environmental Management\Projects\3277670 - Yonge Subway Extension TPAP\Environmental Intrusive Investigation - MAPPING ONLY\Mapping\MXD\North Section Only\Figure 1 Study Area Location Plan.mxd

PLAN OF BOREHOLES AND MONITORING WELLS

L\Ecoplans\03 - Environmental Management\Projects\3277670 - Yonge Subway Extension TPAP\Environmental Intrusive Investigation - MAPPING ONLY\Mapping\MXD\North Section Only\Figure 2 Boreholes and Monitoring Locations.mxd

A member of 🔊

MMM GROUP

APPENDIX A – BOREHOLE LOGS

								Figure I	No.		1	
M	MMGRO	UP				14						
			277670 LOG C	PF BC	DREHOLE <u>B</u>	<u>14</u>						
	roject No. roject:	-	onge Subway Extension TPAP									
	ocation:			Co-ordir	nates: 626318.2E, 4856008.1N	l						
	ate Drilled:		//24/13	_ Datum:	NAD 83 Zone 17N		•	срт	(N) Va	luo		
	rill Type:	ŀ	Iollow Stem Augers				•					
Di	rilling Contra	actor:		_ Checke			-	TOLAI	Organ	IC VOIA	atiles (p	pm)
	DEPTH gs) (masl)	SYMBO	SOIL DESCRIPTION	WELL	INSTALLATION DETAILS	SAMPLE	SOIL SAMPLE		20 4	40 6	Test N 60 8	0
(m bộ	gs) (masi) 206.37				DETAILS		TEST				atiles (p	
0.20	206.17	<u>4 1</u> %		4					:	:	:	
È			SILTY FINE SAND (FILL) - light brown to light grey - trace of coarse sand and gravel			HS1	PAHs, PHCs	A (: : :		
-0.76	205.61		- compact - moist						$\left \right\rangle$:		
F			- inclusions of gabbro (rock)]	-	-		
						HS2	metals	A				
_1.52	204.85							-	: /	<u>/</u>	:	
E			SILTY SAND TILL - dark brown]		:		
E			- some clay - trace of gravel, orange mottled			HS3			¥.			
_			- compact								: : :	
_			- moist							:		
E						HS4	VOCs, moisture		:	:	:	
2.59	203.78		- inclusions of gabbro (rock)					-	2	:	:	
E						HS5			$\left\{ \right\}$			
3. 05	203.32		CLAYEY SILT TILL	4							••••••••••••••••••••••••••••••••••••••	
E			- dark brown							; ,		
F			 trace of sand and gravel, orange mottled hard 			HS6	soil texture	A		•		
F			- moist							[:	
4/2/14	202.56		- black staining					-	1	:		
			- compact									
GDT						HS7	metals	A	•	:	: :	
LAB.									-			
ANADA LAB.GDT	201.8	XXX	End of borehole at 4.57 m	-					•		<u></u>	
SANZ			Notes:									
0 L			 Auger refusal occured at the depth of 0.6 m, therefore the dilling continued in the 									
NTS			alternate location - 1 m north of the original									
Ū			location. 2) Borehole was dry upon completion.									
G.												
OGS												
BHL												
WAY												
SUB												
ШON												
MMM MW REPORT VER.3 YONGESUBWAYBHLOGS.GPJ GINT STD C												
ER.3												
RT VI												
POF												
V RE												
MM												
MM												

									Figu	re No	o		2	
	MMI	MGRO	OUP		F BC	DREHOLE <u>BH</u>	5							
	Proje	ct No.	3	2277670 ECC C										
	Proje		2	onge Subway Extension TPAP										
	Loca	tion:	Ē	Richmond Hill, Ontario	_ Co-ordir	nates: 626279.6E, 4856181.9N								
	Date	Drilled:	7	//25/13	– Datum:	NAD 83 Zone 17N		•	s	PT (I	N) Val	ue		
	Drill ⁻	Гуре:	Ŀ	Iollow Stem Augers		By: SR							atiles (p	
	Drillir	ng Contra	actor:	Valker Drilling Ltd.	Checked	d By: NC		_		nai C	Jyan	C VUIA	uies (F	spin)
ľ			SYMBO-			INSTALLATION	SAMPLE	SOIL	Sta	ndaro 20			Test N 60 8	
	DEF (m bgs)	(masl)	B	SOIL DESCRIPTION	WELL	DETAILS	ID	SAMPLE TEST	-	Tota	l Orgai	nic Vola	atiles (p	
ł		8.73	<u> </u>	TOPSOIL						10)2	<u>03</u>	30 <u>4</u>	0
	_0.20	208.53		SILTY FINE SAND (FILL)	-		1104							
ł	_		\otimes	 light brown to dark brown pieces of wood, rootlets 			HS1			<u> </u>	:		:	:
ŀ	_		\otimes	- trace of gravel - compact					_	1	:	:		
ŀ	_		\bigotimes	- moist					-	1 :		: :		
ļ			\bigotimes										:	:
ļ	_		\bigotimes				HS2	metals			-	: :		
ł	-1.37	207.36			_						-	:		
ł	_			CLAYEY SILT, some sand - light brown to grey						<u></u>		·		
F	_		HI	- trace of gravel							-			
ļ	-			- slightly varved texture - moist			HS3	PAHs, PHCs		• :				
ļ	_		H	- moist					••••			•••••• •	<u>.</u>	
ł	2.29	206.44									-	: :		
ł	-		H	- light brown - trace of sand							:	:		
F	_						HS4			•				
ļ	_		H									: :		
ļ		205.68												:
ł	_			SILTY to FINE SAND - light brown to light grey	1							: :		
ł	_			- very soft			HS5			•	-	:		
ŀ	_			- moist			1100			/				
_	-3.66 -	205.07		CLAYEY SILT TILL	-				-	/ :	-			
71/7	-3.86 -	204.87		 light grey to light brown trace of sand, orange mottled 	-		HS6 /		₽ ¶	•				
4	_			- soft							••••••	;; :		•••••• :
	_			- varved texture - moist			HS7				-	:		
LAB	_4.42	204.31		SILTY CLAY to CLAYEY SILT TILL - light brown					-					
AUA	_			- hard					-			: :		
NA:	_			 varved texture light grey 							;	:		
SID (- trace of sand - orange mottled			HS7b							
_	_			- orange motiled										
U U U	_5.33 _	203.4		- light grey					-			:		
Cr5	_			- trace of sand										
<i>.</i> 5	_						HS8			1	-	: :		:
РГ	_											:		
АУВН	6.10	202.63								1				
SUBW	_			- dark grey - trace of sand			1160							
ESC	_						HS9							
YONGE	_						HS10	VOCs, moisture		•				
ž	_													
EK.3]	<u>.</u>			<u>.</u>	:
AI VE	_						HS11			•				:
ń.	_													
RE-		201.11												
MM		201.11		- dark grey					1					
MM	_			- trace of sand and gravel - saturated			110.10				:	: :		
2			V V V V			1	HS12		_	T :				

									Figure No	D	2	
	мм	MGRO	OUP									
				LOG C	F BC	DREHOLE <u>BH</u>	<u>15</u>					
	Proj	ect No.	_	277670								
	Proj	ect:		onge Subway Extension TPAP								
	Loca	ation:	F	Richmond Hill, Ontario	_ Co-ordir	nates: 626279.6E, 4856181.9N						
	Date	Drilled:	_	//25/13		NAD 83 Zone 17N		•	SPT (ľ	N) Value		
		Туре:	_	Iollow Stem Augers								
	Drilli	ng Contra		Valker Drilling Ltd.	Checke	d By: NC						
			S Y B O			INSTALLATION	SAMPLE	SOIL		d Penetrati) 40		Value 80
	(m bgs)	PTH (masl)	B O	SOIL DESCRIPTION	WELL	DETAILS	ID	SAMPLE TEST	Tota	l Organic \	/olatiles (ppm)
F	2	00.73		SILTY CLAY to CLAYEY SILT TILL			HS12) <u>20</u> :		40 :
E				- light brown - hard					- 1	:		
F	8.38	200.35		- varved texture (continued)					- 1	:		
F				- pebbles							:	:
F							HS13	metals				:
Ŀ	8.99	199.74			4				<u> </u>		:	:
				End of borehole at 8.99 m					1			
				Notes: 1) Groundwater was encountered at the depth					1			
				of 7.6 mbgs upon borehole completion.								
4												
4/2/												
Ы												
B.G												
A LA												
IAD/												
CAN									1			
DT2									1			
S TN												
Ū									1			
GPJ												
GS.									1			
HLO									1			
٩YBI									1			
BW/												
INSI									1			
NGE												
70												
R.3									1			
Γ<									1			
ORI												
ЧЕР												
MMM MW REPORT VER.3 YONGESUBWAYBHLOGS.GPJ GINT STD CANADA LAB.GDT 4/2/14									1			
₽									1			
MΜ												

									Figure	No.		3	
	MMN	IGRO	UP			DREHOLE <u>BH</u>	16						
	Projec	t No	3	277670 LOG U		INCINCE DE							
	Projec		_	onge Subway Extension TPAP									
	Locati		_		_ Co-ordir	nates: 626252.5E, 4856328.9N							
	Date D		7	/24/13		NAD 83 Zone 17N		•	SD.		Value		
	Drill Ty		Ŀ	Iollow Stem Augers				•				alatilaa	(2222)
			actor: V		_ Checked			-	1019	loig	anic v	olatiles	(ppm)
								SOIL					N Value
(DEP (m bgs) (H masl)	S Y B O	SOIL DESCRIPTION	WELL	INSTALLATION DETAILS	SAMPLE ID	SAMPLE TEST			40 rganic \	60 Volatiles	80 (ppm)
\vdash	208	.65	<u>Ľ</u>	TOPSOIL				1201		.10	20		.40
F٥	0.20	208.45	·· XXX	SILTY CLAY to CLAYEY SILT (FILL)	-					-			
F			\otimes	- dark brown			HS1	metals	1			:	
F			\otimes	- pieces of wood, rootlets - hard									
E.			\otimes	- blocky texture - dry					-	÷	:	÷	÷
Ľ).90 	207.75	\otimes	- moist							<u>:</u>		
┢			\otimes				HS2			÷	:	:	:
F			\otimes							÷	:	÷	:
F			\otimes								····;		
F			\bigotimes							÷	÷	÷	:
F			\otimes				HS3		4				
	-		\otimes						<i>\</i>				
E 2	2.29	206.36	\bigotimes							-	:	:	
┢				SILTY CLAY to CLAYEY SILT TILL - dark brown, black mottled						÷	į	÷	:
F				- some sand and gravel - slight organic odour			HS4	VOCs, moisture,		Þ	į	į	į
F				- hard				TCLP		÷	÷	÷	÷
Ŀ	. 05	205.6		- slightly varved texture - moist]		; 		:
F				 orange mottled (signs of oxidation) varved texutre 						÷	:	:	:
F							HS5			÷	:	÷	:
F													
⁺F3	3.81	204.84							1 '	۱.	÷	÷	÷
				- brown to light grey			1100			<u>\</u>	÷	÷	÷
	ī.11	204.54		CLAYEY SILT, some sand	-		HS6]	:	:	
- C				- dark brown, black sand particles			HS7	PHCs		÷\	÷	:	:
	1.57	204.08	+11	- organic odour - hard					-	<u>, i l</u>	: ; ,;		
				¬- very moist SILTY CLAY TILL					1	÷	1	÷	÷
				 dark brown, orange mottled (signs of 			HS8	PAHs			\ }		
	-			oxidation) - hard			1100						
z P	5.18	203.47	XXXA	- moist End of borehole at 5.18 m	-					<u> </u>	:	<u>;</u>	-:
פ													
5				Notes: 1) Borehole was dry upon completion.									
AYBHLUGS													
ВН													
NDB/													
נו													
1 UNGESUBW													
VEK.3													
L L L L L L L													
л Ц Ц													
Σ													

									Figure No.		4
MM	MGRO	UP	1.00	G OF F	SOF	REHOLE MW	14				
Proi	ect No.	;	3277670				<u> </u>				
	Project:		Yonge Subway Extension TPAP								
	Location:		Richmond Hill, Ontario Co-ordinates: 626299.7E, 4856095.9N								
Date	Date Drilled:		7/25/13		Datum: NAD 83 Zone 17N				SPT (N) \	/alue	
	Drill Type:		Hollow Stem Augers		Logged By: SR				Total Organic Volatiles (ppm)		
Drill	ing Contra		Walker Drilling Ltd.	Che	Checked By: NC				Standard Penetration Test N Value		
DE (m bas)	DEPTH (mbgs) (masl)		SOIL DESCRIPTION	WE	LL	INSTALLATION DETAILS	SAMPLE ID	SOIL SAMPLE	20 40 60 80 Total Organic Volatiles (ppm)		
2	08.09	<u> </u>	TOPSOIL			Bentonite		TEST	10	20 30	
0.20	207.89		SILTY FINE SAND (FILL)								
F		\bigotimes	 light to dark brown, black staining 				HS1	VOCs, moisture, PHCs			
F		\bigotimes	- compact - blocky texture					FICS			
-0.76	207.33	\bigotimes	- moisť j - dark brown						- 1	: :	
E		\bigotimes								<u>:</u>	:
E		\bigotimes					HS2	metals, soil texture	🖊 E -	: :	
F		\bigotimes								: :	
_1.52	206.57	\bigotimes	arange mettled black steining					_			
F		\bigotimes	- orange mottled, black staining								
F		\bigotimes					HS3	PAHs	▲ ♥ :	: :	
F										···	
2.28	205.81	XXX	CLAYEY SILT, some sand							: :	
E			- trace of gravel								
E		H	- varved texture - moist				HS4		▲ •		
E			-							: :	
3. 05	205.04	11	Calet barrow							···÷	
F			- light brown							: :	
F		111					HS5		▲ ♦		
F									!:	:	
<u></u> ₹_3.81	204.28	1111							- 1	: :	
77 - 4.04	204.05		- light brown, orange mottled				HS6	PAHs			
			SILTY SAND - some clay								
AB-			- orange mottled - moist				HS7			: :	
4.57	203.52		SANDY SILT TILL							···•	
			- light brown, orange mottled								
			- some clay				HS8		A		
									i\	: :	
5.33	202.76		- black sand								
5.48	202.61		- light brown				HS9			···•••••••••••••••••••••••••••••••••••	
			- soft - moist				HS10				
									-		
сэротняду 6.10	201.99		CLAYEY SILT to SILTY CLAY TILL						-		
			🗧 - light grey								
			- some sand and gravel - slight organic odour				HS11		A	<u>•</u>	
			- compact - moist								
≻6.86	201.23										
– – – – – – – – – – – – – – – – – – –			- varved texture						<u>-</u> 	······································	
ž-							HS12		A	: :	
									/	: :	
¥7.62	200.47		- trace of sand and gravel						- /: -		
≥ -			- hard						/ :	: :	
]		· . ·	Sandpack	HS13			:	

								Figure No.	4
MMN	/ GRO	UP							
		~	277670 LOG O	L RO	REHOLE <u>MV</u>	<u>v4</u>			
Projec		-	Z77670						
-				0	ates: 626299.7E, 4856095.9N				
		_				NAD 83 Zone 17N		SPT (N) Val	ue
Drill Type: Hollow Stem Augers Drilling Contractor: Walker Drilling Ltd.									
Dhinn	g Contra		tantoi Brinniy Eta.		ы ву. <u>но</u>		0.01	Standard Pene	tration Test N Value
DEP (m bgs) 200	TH (masl)).09	S≻MBOL	SOIL DESCRIPTION	WELL	INSTALLATION DETAILS	SAMPLE ID	SOIL SAMPLE TEST	20 4 Total Organ 10 2	nic Volatiles (ppm)
-			CLAYEY SILT to SILTY CLAY TILL - light grey			HS13			
-			- some sand and gravel - slight organic odour						
F			- compact						; ;
8.71	199.38		- moist (continued)			HS14	metals		
- 	199.1		SANDY SILT, some clay - dark grey - compact			HS15			
-9.14	198.95		- moist - saturated						
-			- Saturated	日日					
- - -9.75	198.34					HS16		A	
			End of borehole at 9.75 m	1	Water measured on				· · ·
			Notes:		03/24/2014				
			1) A 50 mm diameter well was installed at the depth of 9.75 mbgs upon borehole		200.00 masl 8.99 mbgs				
			completion. 2) Groundwater was encountered at the depth		Well Diameter:				
			of 9.1 mbgs upon borehole completion.		50 mm				
					Well Material:				
					Schedule 40 PVC				
41/									
. 4/2									
GDT									
AB.									
DAL									
ANA									
D C/									
-STI									
INIC									
L L									
S.G									
LOG									
(BHI									
WAY									
SUB									
le I C E									
ζ0									
R.3									
- VE									
ORT									
REP									
MMM MW REPORT VER.3 YONGESUBWAYBHLOGS.GPJ GINT STD CANADA LAB.GDT 4/2/14									
A MN									
Δ									

								Figure N	lo		5
M	MMGRO	OUP			REHOLE MY	15					
P	roject No.	3	2277670			<u>və</u>					
	roject:	Ŋ	Conge Subway Extension TPAP								
	ocation:	Ē	Richmond Hill, Ontario	_ Co-ordin	ates: 626267.5E, 4856250.5N						
D	ate Drilled:	7	7/24/13	_ Datum:	NAD 83 Zone 17N		•	SPT	(N) Va	lue	
D	rill Type:	Ŀ	Hollow Stem Augers	Logged	By: SR				. ,		tiles (ppm)
D	rilling Contra	actor:	Valker Drilling Ltd.	_ Checked	ву: <u>NC</u>				-		
		SY M B O			INSTALLATION	SAMPLE	SOIL		rd Pene 20 4		Test N Value 0 80
(m bị	DEPTH gs) (masl) 208.61	B	SOIL DESCRIPTION	WELL	DETAILS	ID	SAMPLE TEST	Tot	al Orga	nic Vola	atiles (ppm) 0.40
0.20		<u>x 7/2</u>	TOPSOIL		Bentonite			-	<u></u>	<u></u>	<u></u>
F	200.41		SANDY SILT (FILL)			HS1			:	: :	:
F		\bigotimes	- light to dark brown - some gravel			1101				<u>.</u>	
-0.76	207.85	\bigotimes	- rootlets - soft					+			
E	201.00	\bigotimes	- moist					\neg			
		\bigotimes	 light brown, fragments of asphalt hard 							<u>.</u>	
F						HS2	metals			: :	:
F	007.00	\bigotimes						-1	-	: :	:
_1.52	207.09 206.91	ΗĤ	CLAYEY SILT to SILTY TILL			HS3				:	
E	200.91		- dark brown, orange stained - some sand					-1-1	:	: :	
E			- soft - moist			HS4				:	
E			- dark brown, some gravel					-	-	: :	:
-2.29	206.32		- slightly varved texture - dark brown to dark grey, grey veined					-		: :	:
F			- hard			HS5		- ▲•	: :	: ;;	
F								∣ ▲∣		: :	:
F						HS6	VOCs, moisture, PAHs	╡╸╽	-		
-3.05	205.56		- very hard								
E											
-						HS7	PAHs	▲ •		: :	:
F										:	:
<u>+</u> 3.81	204.8		block motiled trace of ecome to fine cand					-	i	: :	:
3.96	204.65		- black mottled, trace of coarse to fine sand, slight organic odour, hard			HS8	PHCs	-{ .	.	: ;;	
			- light brown, grey veined - hard			HS9			:	: :	
AB			- varved texture			1100					
4.57	204.04		- very moist								
			- some sand, trace gravel - soft								
						HS10			•		
~									:	:	
Z 5.33	203.28								:	: :	:
			SILTY CLAY TILL - light to dark brown, grey mottled						: 	: ;;	
			- signs of oxidation - soft			HS11			•	: :	:
			- moist							: :	:
H9 ↓ 6.10	202.51								Į	÷	
			- becoming grey - varved texture					7 /	-	: :	:
						HS12					
YONGESUBW						11012			:	:	
È											:
2.5								-	:	<u>:</u>	:
						LIC10			: 4	: :	:
5-						HS13				: :	:
										÷÷	
8-								1			
≥		VVVV	1			HS14		T	<u> </u>	ن خ	

									Figure I	No		5	
	MM	M GRO	UP			REHOLE MV	15						
	Proie	ct No.	3	277670			<u>v5</u>						
	Proje		Y	onge Subway Extension TPAP									
	Locat	ion:	F	Richmond Hill, Ontario	Co-ordin	ates: 626267.5E, 4856250.5N							
	Date	Drilled:	7	/24/13	Datum:	NAD 83 Zone 17N		•	SPT	(N) Va	alue		
	Drill 1		_	Iollow Stem Augers									
	Drillin	ig Contra	actor: V	Valker Drilling Ltd.	Checked	ву: <u>NC</u>							
	DED	പ	S≻⊠BO-	SOIL DESCRIPTION	WELL	INSTALLATION	SAMPLE	SOIL SAMPLE					
(DEP (m bgs) 20	(masl) 0.61	B O	SOIL DESCRIPTION	WLLL	DETAILS	ID	TEST			anic Vol		
F		0.01					HS14			:	:	:	:
Fa	.38	200.23							-	-	:	-	-
F				SILTY CLAY to CLAYEY SILT TILL - dark grey						:		÷	÷
F				- trace of gravel			HS15	metals		:	:	;	:
F				- hard - moist				metalo		V	:	:	30 ppm)
5	- .14 .20	199.47								 :\	. <u>.</u>	<u>.</u>	. <u>.</u>
Ŀ	.20	199.47 199.41		- dark grey - very moist	Ţ					1			:
Ŀ	.52	199.09		- varved texture		Sandpack	HS16			<u>.</u>		<u>:</u>	:
E				SAND, some clay - dark grey			HS17			:	:	-	:
E				- saturated									-
E	-								••••••	÷		: :	·
F							HS18			•	:	÷	:
F										:/	:	:	:
F									/	<u>.</u>		÷	·•••••
F									\neg /	:	÷	:	:
F	-						HS19		4•	: •	; 	÷	
Ē	1.28	197.33								į			
				End of borehole at 11.28 m		Water measured on							
				Notes:		03/24/2014 200.32 masl							
4				 A 50 mm diameter well was installed at the depth of 11.3 mbgs upon borehole completion. 		9.2 mbgs							
ANADA LAB.GDT 4/2/14				Groundwater was encountered at the depth		Well Diameter: 50 mm							
GDT				of 9.3 mbgs upon borehole completion.									I Value 80 ppm) 40
AB.0						Well Material: Schedule 40 PVC							
DAL													
ANA													
D D													
T ST													
GIN													
Ъ													
GS.0													
HLO													
АУВ													
NBL													
SESI													
ONO													
3 X													
VER													
ORT													
ZEP(
MMM MW REPORT VER.3 YONGESUBWAYBHLOGS.GPJ GINT STD C													
MM													
Σ													

APPENDIX B – CERTIFICATE OF ANALYSIS FOR SOIL SAMPLES

Table B1: Summary of Analytical Results
Metals and Inorganic Parameters in Soil
Yonge Subway EPR Addendum

Borehole ID		MOE			BH7(0-2')	BH7(10'-12')	BH4(2'.5-4'.5)	BH4(12'.5-14'.2)	BH5(2'.5-4'.5)	D1 - BH5(2'.5-4'.5)	BH5(27'.5-29'.5)	D2 - BH5(27'.5-29'.5)
	MOE	Table 3	Reporting		0-0.6	3.0-3.6	0.7-1.3	3.8-4.3	0.7-1.3	0.7-1.3	8.3-8.9	8.3-8.9
Maxxam work order	Table 1	ICC Land	limit	Units	SK6004	SK6006	SK6010	SK6013	SK6015	SK6019	SK6018	SK6020
Sampling Date		Use			24-Jul-13	24-Jul-13	25-Jul-13	25-Jul-13	25-Jul-13	25-Jul-13	25-Jul-13	25-Jul-13
Antimony	1.3	50	0.20	ug/g	<0.20	ND	ND	ND	ND	ND	ND	ND
Arsenic	18	18	1.0	ug/g	2.4	2.6	1.4	2.2	2.5	2.3	2.2	2.8
Barium	220	670	0.50	ug/g	67	87	26	76	60	58	48	62
Beryllium	2.5	10	0.20	ug/g	0.46	0.51	ND	0.4	0.39	0.38	0.32	0.45
Boron ^(a) (Hot Water Soluble)	NV	2	0.050	ug/g	0.13	0.14	0.086	0.061	0.095	0.1	0.077	0.12
Boron (total)	36	120	5.0	ug/g	ND	5.3	ND	ND	ND	ND	ND	6.3
Cadmium	1.2	1.9	0.10	ug/g	ND	0.13	ND	ND	ND	ND	ND	ND
Chromium Total	70	160	1.0	ug/g	16	19	7	15	14	14	12	16
Chromium VI	0.66	10	0.2	ug/g	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cobalt	21	100	0.10	ug/g	6.9	7.7	3	8.6	6.4	6.2	5.4	7.9
Copper	92	300	0.50	ug/g	14	16	7.2	14	13	12	11	15
Cyanide, Free	0.051	0.051	0.01	ug/g	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Electrical Conductivity	0.57	1.4	0.002	mS/cm	0.15	0.21	0.33	0.28	0.15	0.2	0.18	0.23
Lead	120	120	1.0	ug/g	9.2	8.8	3.5	7.4	7.3	6.9	5.2	7.7
Mercury	0.27	20	0.050	ug/g	ND	ND	ND	ND	ND	ND	ND	ND
Molybdenum	2	40	0.50	ug/g	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	82	340	0.50	ug/g	14	17	6.5	18	14	13	12	18
Available (CaCl2) pH	NV	NV	NV	pH Units	7.36	7.53	7.61	7.65	7.51	7.56	6.98	7.97
Selenium	1.5	5.5	0.50	ug/g	ND	ND	ND	ND	ND	ND	ND	ND
Silver	0.5	50	0.20	ug/g	ND	ND	ND	ND	ND	ND	ND	ND
Sodium Adsorption Ratio	2.4	12	NV	NV	0.25	0.44	0.54	0.35	0.27	0.24	0.26	0.25
Thallium	1	3.3	0.050	ug/g	0.12	0.13	0.052	0.14	0.1	0.1	0.072	0.079
Uranium	2.5	33	0.050	ug/g	0.43	0.6	0.29	0.41	0.4	0.42	0.54	0.59
Vanadium	86	86	5.0	ug/g	24	25	13	23	21	21	18	23
Zinc	290	340	5.0	ug/g	38	54	16	34	32	32	27	38

Notes:

NM = Not Measured

NV = No Value

(a) This standard is for hot water soluble extract for surface soils. For subsurface soils, the standard is for total boron (mixed strong acid digest), since plant protection for soils below the root zone is not a significant concern.

Criteria Used: Ontario Ministry of the Environment, "Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 2011.

MOE Table 1: Background Site Condition Standards for Res. / Park / Institu. / Ind. / Com. / Comm. property use and all textures.

10	Exceeds MOE Standard Table 1
	Exceeds MOE Standard Table 3, Standard 1 does not exist
10	Exceeds MOE Standard Table 1 and 3

Table B1: Summary of Analytical Results Metals and Inorganic Parameters in Soil Yonge Subway EPR Addendum

Borehole ID		MOE			MW4(2'.5-4'.5)	MW4(27'.5-28.7")	MW5(2'.5-4'.5)	MW5(27'.5-29'.5)
	MOE	Table 3	Reporting		0.7-1.3	8.3-8.7	0.7-1.3	8.3-8.9
Maxxam work order	Table 1	ICC Land	limit	Units	SK6022	SK6025	SK6028	SK6032
Sampling Date		Use			25-Jul-13	25-Jul-13	25-Jul-13	25-Jul-13
Antimony	1.3	50	0.20	ug/g	ND	ND	ND	ND
Arsenic	18	18	1.0	ug/g	3.1	3	2.6	4.2
Barium	220	670	0.50	ug/g	79	76	73	81
Beryllium	2.5	10	0.20	ug/g	0.42	0.45	0.5	0.65
Boron ^(a) (Hot Water Soluble)	NV	2	0.050	ug/g	0.1	0.11	0.11	0.089
Boron (total)	36	120	5.0	ug/g	ND	7.3	5.4	6.2
Cadmium	1.2	1.9	0.10	ug/g	ND	ND	ND	ND
Chromium Total	70	160	1.0	ug/g	17	19	16	22
Chromium VI	0.66	10	0.2	ug/g	<0.2	<0.2	<0.2	<0.2
Cobalt	21	100	0.10	ug/g	8.4	8.1	7.4	12
Copper	92	300	0.50	ug/g	16	19	15	22
Cyanide, Free	0.051	0.051	0.01	ug/g	<0.01	< 0.01	<0.01	<0.01
Electrical Conductivity	0.57	1.4	0.002	mS/cm	0.27	0.24	0.16	0.27
Lead	120	120	1.0	ug/g	7.9	8.2	8.5	12
Mercury	0.27	20	0.050	ug/g	ND	ND	ND	ND
Molybdenum	2	40	0.50	ug/g	ND	ND	ND	ND
Nickel	82	340	0.50	ug/g	19	19	16	27
Available (CaCl2) pH	NV	NV	NV	pH Units	7.6	7.7	7.4	7.84
Selenium	1.5	5.5	0.50	ug/g	ND	ND	ND	ND
Silver	0.5	50	0.20	ug/g	ND	ND	ND	ND
Sodium Adsorption Ratio	2.4	12	NV	NV	0.36	0.22	0.26	0.23
Thallium	1	3.3	0.050	ug/g	0.11	0.13	0.13	0.09
Uranium	2.5	33	0.050	ug/g	0.83	0.71	0.42	0.67
Vanadium	86	86	5.0	ug/g	23	25	25	26
Zinc	290	340	5.0	ug/g	39	38	38	56

Notes:

NM = Not Measured

NV = No Value

(a) This standard is for hot water soluble extract for surface soils. For subsurface soils, the standard is for total boron (mixed strong acid digest), since plant protection for soils below the root zone is not a significant concern.

Criteria Used: Ontario Ministry of the Environment, "Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 2011.

MOE Table 1: Background Site Condition Standards for Res. / Park / Institu. / Ind. / Com. / Comm. property use and all textures.

10	Exceeds MOE Standard Table 1
	Exceeds MOE Standard Table 3, Standard 1 does not exist
10	Exceeds MOE Standard Table 1 and 3

Table B2: Summary of Analytical Results Petroleum Hydrocarbons in Soil Yonge Subway EPR Addendum

		MOE			BH7(13'.5-14'.5)	BH4(0-2')	BH5(5'-7')	MW4(0-2')	MW5(12'.5-13')
	MOE	Table 3 ICC	Reporting	Units	4.1-4.4	0-0.6	1.5-2.1	0-0.6	3.8-3.9
	Table 1	Land	limit	Units	SK6007	SK6009	SK6016	SK6021	SK6031
Sampling Date		Use			24-Jul-13	25-Jul-13	25-Jul-13	25-Jul-13	24-Jul-13
BTEX & F1 Hydrocarbons									
Benzene	0.02	0.4	0.020	ug/g	<0.020	<0.020	<0.020	NM	<0.020
Toluene	0.2	78	0.020	ug/g	<0.020	<0.020	<0.020	NM	<0.020
Ethylbenzene	0.05	19	0.020	ug/g	<0.020	<0.020	<0.020	NM	<0.020
o-Xylene	NV	NV	0.020	ug/g	<0.020	<0.020	<0.020	NM	<0.020
m-Xylene & p-Xylene	NV	NV	0.040	ug/g	<0.040	<0.040	<0.040	NM	<0.040
Xylene Mixture	0.05	30	0.040	ug/g	<0.040	<0.040	<0.040	NM	<0.040
F1 (C6-C10)	25	65	10	ug/g	<10	<10	<10	<10	<10
F1 (C6-C10) - BTEX	25	65	10	ug/g	<10	<10	<10	<10	<10
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	10	250	10	ug/g	<10	<10	<10	<10	<10
F3 (C16-C34 Hydrocarbons)	240	2500	50	ug/g	<50	<50	<50	<50	<50
F4 (C34-C50 Hydrocarbons)	120	6600	50	ug/g	<50	<50	<50	68	<50
Reached Baseline at C50	NV	NV	NV	ug/g	Yes	Yes	Yes	NO	Yes
F4 Gravimetric	120	6600	100	ug/g	NV	NV	NV	180	NV

Notes:

NM = Not Measured

NV = No Value

Criteria Used: Ontario Ministry of the Environment, "Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 2011.

MOE Table 1: Background Site Condition Standards for Res. / Park / Institu. / Ind. / Com. / Comm. property use and all textures.

10	Exceeds MOE Standard Table 1
	Exceeds MOE Standard Table 3, Standard 1 does not exist
10	Exceeds MOE Standard Table 1 and 3

Table B3: Summary of Analytical Results Polyaromatic Hydrocarbons in Soil Yonge Subway EPR Addendum

Borehole ID		MOE			BH7(15'-17')	BH4(0-2')	BH5(5'-7')	MW4(5'-7')	D3 - MW4(5'-7')	MW4(12'.5-13'.3")	D4 - MW4(12.5'-13'3")	MW5(8'.5-9'.5)	MW5(10'-12')
Depth (m)	MOE		Reporting	Units	4.5-5.1	0-0.6	1.5-2.1	1.5-2.1	1.5-2.1	3.8-4	3.8-4	2.5-2.8	3-3.6
Maxxam work order	Table 1	ICC Land	Limit	Units	SK6008	SK6009	SK6016	SK6023	SK6026	SK6024	SK6027	SK6029	SK6030
Sampling Date		Use			25-Jul-13	25-Jul-13	25-Jul-13	25-Jul-13	25-Jul-13	25-Jul-13	25-Jul-13	24-Jul-13	24-Jul-13
Acenaphthene	0.072	96	0.0050	ug/g	< 0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Acenaphthylene	0.093	0.17	0.0050	ug/g	<0.0050	0.0052	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Anthracene	0.16	0.74	0.0050	ug/g	<0.0050	0.0052	<0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050	<0.0050	<0.0050
Benzo[a]anthracene	0.36	0.96	0.0050	ug/g	<0.0050	0.021	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Benzo[a]pyrene	0.3	0.3	0.0050	ug/g	<0.0050	0.019	<0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050	<0.0050	<0.0050
Benzo[b]fluoranthene	0.47	0.96	0.0050	ug/g	<0.0050	0.027	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Benzo[g,h,i]perylene	0.68	9.6	0.0050	ug/g	<0.0050	0.017	<0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050	<0.0050	<0.0050
Benzo[k]fluoranthene	0.48	0.96	0.0050	ug/g	<0.0050	0.0087	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Chrysene	2.8	9.6	0.0050	ug/g	<0.0050	0.022	<0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050	<0.0050	<0.0050
Dibenzo[a,h]anthracene	0.1	0.1	0.0050	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Fluoranthene	0.56	9.6	0.0050	ug/g	<0.0050	0.039	<0.0050	0.0052	< 0.0050	< 0.0050	< 0.0050	<0.0050	<0.0050
Fluorene	0.12	69	0.0050	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Indeno[1,2,3-cd]pyrene	0.23	0.95	0.0050	ug/g	<0.0050	0.016	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050
Methylnaphthalene, 1-	0.59 ^(a)	0.85 ^(a)	0.0050	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	<0.0050
Methylnaphthalene, 2-	0.59 ^(a)	0.85 ^(a)	0.0050	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Naphthalene	0.09	28	0.0050	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Phenanthrene	0.69	16	0.0050	ug/g	<0.0050	0.022	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Pyrene	1	96	0.0050	ug/g	<0.0050	0.039	< 0.0050	0.0052	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050

NM = Not Measured; NV = No Value

(a) The methylnaphthalene standards are applicable to both 1methylnaphthalene and 2-methylnaphthalene, with the provision that if both are detected the sum of the two must not exceed the standard.

Criteria Used: Ontario Ministry of the Environment, "Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 2011.

MOE Table 1: Background Site Condition Standards for Res. / Park / Institu. / Ind. / Com. / Comm. property use and all textures.

10	Exceeds MOE Standard Table 1
	Exceeds MOE Standard Table 3, Standard 1 does not exist
10	Exceeds MOE Standard Table 1 and 3

Table B4: Summary of Analytical Results Volatile Organic Compounds in Soil Yonge Subway EPR Addendum

Borehole ID		MOE			BH7(7'.5-9'.5)	BH4(7'.5-8'.5)	D5 - BH4(7'.5-8'.5)	BH5(21'3''-22')	MW4(0-2')	MW5(8'.5-9'.5)
Depth (m)	MOE	Table 3	Reporting	Units	2.2-2.8	2.2-2.5	2.2-2.5	6.4-6.7	0-0.6	2.5-2.8
Maxxam work order	Table 1	ICC Land	Limit	Units	SK6005	SK6011	SK6014	SK6017	SK6021	SK6029
Sampling Date		Use			24-Jul-13	25-Jul-13	25-Jul-13	25-Jul-13	25-Jul-13	24-Jul-13
Acetone	0.5	28	0.50	ug/g	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Benzene	0.02	0.4	0.020	ug/g	<0.020	< 0.020	<0.020	<0.020	< 0.020	< 0.020
Bromodichloromethane	0.05	18	0.050	ug/g	<0.050	< 0.050	<0.050	<0.050	< 0.050	< 0.050
Bromoform	0.05	1.7	0.050	ug/g	<0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050
Bromomethane	0.05	0.05	0.050	ug/g	<0.050	< 0.050	<0.050	<0.050	<0.050	< 0.050
Carbon Tetrachloride	0.05	1.5	0.050	ug/g	<0.050	< 0.050	< 0.050	<0.050	<0.050	< 0.050
Chlorobenzene	0.05	2.7	0.050	ug/g	<0.050	< 0.050	< 0.050	<0.050	<0.050	< 0.050
Chloroform	0.05	0.18	0.050	ug/g	<0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050
Dibromochloromethane	0.05	13	0.050	ug/g	<0.050	< 0.050	< 0.050	<0.050	<0.050	< 0.050
Dichlorobenzene, 1,2-	0.05	8.5	0.050	ug/g	<0.050	< 0.050	< 0.050	<0.050	<0.050	< 0.050
Dichlorobenzene, 1,3-	0.05	12	0.050	ug/g	<0.050	< 0.050	< 0.050	<0.050	<0.050	< 0.050
Dichlorobenzene, 1.4-	0.05	0.84	0.050	ug/g	<0.050	< 0.050	<0.050	<0.050	< 0.050	< 0.050
Dichlorodifluoromethane	0.05	25	0.050	ug/g	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Dichloroethane. 1.1-	0.05	21	0.050	ug/g	<0.050	< 0.050	<0.050	<0.050	<0.050	< 0.050
Dichloroethane, 1,2-	0.05	0.05	0.050	ug/g	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050
Dichloroethylene, 1,1-	0.05	0.48	0.050	ug/g	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Dichloroethylene, cis-1,2-	0.05	37	0.050	ug/g	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Dichloroethylene, trans-1,2-	0.05	9.3	0.050	ug/g	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Dichloropropane, 1,2-	0.05	0.68	0.050	ug/g	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050
Dichloropropene, 1,3- cis	0.05 ^(a)	0.21 ^(a)	0.030	ug/g	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030
Dichloropropene, 1,3- trans	0.05 ^(a)	0.21 ^(a)	0.040	ug/g	< 0.040	< 0.040	<0.040	<0.040	<0.040	<0.040
Ethylbenzene	0.05	19	0.020	ug/g	<0.020	<0.020	<0.020	<0.020	< 0.020	<0.020
Ethylene dibromide	0.05	0.05	0.050	ug/g	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Hexane (n)	0.05	88	0.050	ug/g	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050
Methyl Ethyl Ketone	0.5	88	0.50	ug/g	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Methyl Isobutyl Ketone	0.5	210	0.50	ua/a	<0.50	< 0.50	<0.50	<0.50	< 0.50	<0.50
Methyl tert-Butyl Ether (MTBE)	0.05	3.2	0.050	ug/g	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Methylene Chloride	0.05	2	0.050	ug/g	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Styrene	0.05	43	0.050	ug/g	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Tetrachloroethane, 1,1,1,2-	0.05	0.11	0.050	ug/g	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Tetrachloroethane, 1,1,2,2-	0.05	0.094	0.050	ug/g	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Tetrachloroethylene	0.05	21	0.050	ug/g	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050
Toluene	0.2	78	0.020	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Trichloroethane, 1,1,1-	0.05	12	0.050	ug/g	<0.050	< 0.050	<0.050	< 0.050	<0.050	<0.050
Trichloroethane, 1,1,2-	0.05	0.11	0.050	ug/g	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Trichloroethylene	0.05	0.61	0.050	ug/g	<0.050	< 0.050	<0.050	< 0.050	<0.050	<0.050
Trichlorofluoromethane	0.25	5.8	0.050	ug/g	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Vinyl Chloride	0.02	0.25	0.020	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
m-Xylene & p-Xylene	NV	NV	0.020	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
o-Xylene	NV	NV	0.020	ua/a	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Total Xylene	0.05	30	0.020	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020

Notes: NM = Not Measured NV = No Value

(a) This standard is for Dichloropropene-1,3 Criteria Used: Ontario Ministry of the Environment, "Soil, Groundwater and

Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 2011.

MOE Table 1: Background Site Condition Standards for Res. / Park / Institu. / Ind. / Com. / Comm. property use and all textures.

MOE Table 3: Generic Site Conditions Standards for medium/fine textured soils in a Non-Potable Ground Water Conditions for Industrial, Commercial, Community (ICC) land use.

	Exceeds MOE Standard Table 1
10	Exceeds MOE Standard Table 3,
10	Standard 1 does not exist
10	Exceeds MOE Standard Table 1 and 3

Page 1 of 1 28/04/2014

Your Project #: YONGE SUBWAY EXTENSION Your C.O.C. #: 42843101, 428431-01-01

Attention: Natalia Codoban

Ecoplans Limited 2655 North Sheridan Way Suite 280 Mississauga, ON L5K 2P8

Report Date: 2013/08/02

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B3C2252 Received: 2013/07/26, 09:45

Sample Matrix: Soil # Samples Received: 29

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Methylnaphthalene Sum	9	N/A	2013/08/01 CAM SOP - 00301	EPA 8270
Hot Water Extractable Boron	12	2013/08/01	2013/08/02 CAM SOP-00408	R153 Ana. Prot. 2011
1,3-Dichloropropene Sum	6	N/A	2013/08/02 CAM SOP-00226	EPA 8260
Free (WAD) Cyanide	12	N/A	2013/08/01 CAM SOP-00457	Ontario MOE CN-E3015
Conductivity	12	N/A	2013/08/01 CAM SOP-00414	MOE LSB E3138 v2
Hexavalent Chromium in Soil by IC (1)	12	2013/07/31	2013/07/31 CAM SOP-00436	EPA SW846-3060/7199
Petroleum Hydro. CCME F1 & BTEX in Soil	4	2013/07/30	2013/07/31 CAM SOP-00315	CCME CWS
Petroleum Hydro. CCME F1 & BTEX in Soil	1	2013/07/31	2013/08/01 CAM SOP-00315	CCME CWS
Petroleum Hydrocarbons F2-F4 in Soil	5	2013/07/30	2013/08/01 CAM SOP-00316	CCME CWS
F4G (CCME Hydrocarbons Gravimetric)	1	2013/08/01	2013/08/01 CAM SOP-00316	CCME CWS
Acid Extr. Metals (aqua regia) by ICPMS	12	2013/08/01	2013/08/01 CAM SOP-00447	EPA 6020
Moisture	27	N/A	2013/07/31 CAM SOP-00445	R.Carter,1993
Moisture	1	N/A	2013/08/01 CAM SOP-00445	R.Carter,1993
PAH Compounds in Soil by GC/MS (SIM)	1	2013/07/31	2013/07/31 CAM SOP - 00318	EPA 8270
PAH Compounds in Soil by GC/MS (SIM)	8	2013/07/31	2013/08/01 CAM SOP - 00318	EPA 8270
pH CaCl2 EXTRACT	12	2013/08/01	2013/08/01 CAM SOP-00413	SM 4500H+ B
Sieve, 75um	2	N/A	2013/07/31 CAM SOP-00467	M.R Carter SSMA
Sodium Adsorption Ratio (SAR)	12	2013/07/30	2013/08/02 CAM SOP-00102	EPA 6010
Volatile Organic Compounds in Soil	6	2013/07/31	2013/08/01 CAM SOP-00226	EPA 8260 modified

Remarks:

Maxxam Analytics has performed all analytical testing herein in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Reporting results to two significant figures at the RDL is to permit statistical evaluation and is not intended to be an indication of analytical precision.

The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following the 'Alberta Environment Draft Addenda to the CWS-PHC, Appendix 6, Validation of Alternate Methods'. Documentation is

Your Project #: YONGE SUBWAY EXTENSION Your C.O.C. #: 42843101, 428431-01-01

Attention: Natalia Codoban

Ecoplans Limited 2655 North Sheridan Way Suite 280 Mississauga, ON L5K 2P8

Report Date: 2013/08/02

CERTIFICATE OF ANALYSIS

available upon request. Maxxam has made the following improvements to the CWS-PHC reference benchmark method: (i) Headspace for F1; and, (ii) Mechanical extraction for F2-F4. Note: F4G cannot be added to the C6 to C50 hydrocarbons. The extraction date for samples field preserved with methanol for F1 and Volatile Organic Compounds is considered to be the date sampled.

Maxxam Analytics is accredited for all specific parameters as required by Ontario Regulation 153/04. Maxxam Analytics is limited in liability to the actual cost of analysis unless otherwise agreed in writing. There is no other warranty expressed or implied. Samples will be retained at Maxxam Analytics for three weeks from receipt of data or as per contract.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Soils are reported on a dry weight basis unless otherwise specified.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Jolanta Goralczyk, Project Manager Email: JGoralczvk@maxxam.ca Phone# (905) 817-5751

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 2

Page 2 of 35

Ecoplans Limited Client Project #: YONGE SUBWAY EXTENSION

O'REG 153 METALS & INORGANICS PKG (SOIL)

Maxxam ID		SK6004	SK6004		SK6006	SK6010		
Sampling Date		2013/07/24	2013/07/24		2013/07/24	2013/07/25		
COC Number	Units	428431-01-01 BH7(0-2')	428431-01-01 BH7(0-2')	QC Batch	428431-01-01 BH7(10'-12')	428431-01-01 BH4(2'.5-4'.5)	RDL	QC Batch
	Units	YONGE SUBWAY EXTENSION	YONGE SUBWAY EXTENSION Lab-Dup	QC Batch	YONGE SUBWAY EXTENSION	SUBWAY EXTENSION	KDL	QC Batch
Calculated Parameters								
Sodium Adsorption Ratio	N/A	0.25		3297687	0.44	0.54		3297687
Inorganics								
Chromium (VI)	ug/g	ND		3299513	ND	ND	0.2	3299513
Conductivity	mS/cm	0.15		3300619	0.21	0.33	0.002	3300619
Free Cyanide	ug/g	ND		3299379	ND	ND	0.01	3299379
Moisture	%	11		3299336	15	13	1.0	3299336
Available (CaCl2) pH	pН	7.36		3300312	7.53	7.61		3300312
Metals								
Hot Water Ext. Boron (B)	ug/g	0.13	0.14	3300848	0.14	0.086	0.050	3300621
Acid Extractable Antimony (Sb)	ug/g	ND		3300582	ND	ND	0.20	3300582
Acid Extractable Arsenic (As)	ug/g	2.4		3300582	2.6	1.4	1.0	3300582
Acid Extractable Barium (Ba)	ug/g	67		3300582	87	26	0.50	3300582
Acid Extractable Beryllium (Be)	ug/g	0.46		3300582	0.51	ND	0.20	3300582
Acid Extractable Boron (B)	ug/g	ND		3300582	5.3	ND	5.0	3300582
Acid Extractable Cadmium (Cd)	ug/g	ND		3300582	0.13	ND	0.10	3300582
Acid Extractable Chromium (Cr)	ug/g	16		3300582	19	7.0	1.0	3300582
Acid Extractable Cobalt (Co)	ug/g	6.9		3300582	7.7	3.0	0.10	3300582
Acid Extractable Copper (Cu)	ug/g	14		3300582	16	7.2	0.50	3300582
Acid Extractable Lead (Pb)	ug/g	9.2		3300582	8.8	3.5	1.0	3300582
Acid Extractable Molybdenum (Mo)	ug/g	ND		3300582	ND	ND	0.50	3300582
Acid Extractable Nickel (Ni)	ug/g	14		3300582	17	6.5	0.50	3300582
Acid Extractable Selenium (Se)	ug/g	ND		3300582	ND	ND	0.50	3300582
Acid Extractable Silver (Ag)	ug/g	ND		3300582	ND	ND	0.20	3300582
Acid Extractable Thallium (TI)	ug/g	0.12		3300582	0.13	0.052	0.050	3300582
Acid Extractable Uranium (U)	ug/g	0.43		3300582	0.60	0.29	0.050	3300582
Acid Extractable Vanadium (V)	ug/g	24		3300582	25	13	5.0	3300582
Acid Extractable Zinc (Zn)	ug/g	38		3300582	54	16	5.0	3300582
Acid Extractable Mercury (Hg)	ug/g	ND		3300582	ND	ND	0.050	3300582

ND = Not detected RDL = Reportable Detection Limit

Ecoplans Limited Client Project #: YONGE SUBWAY EXTENSION

O'REG 153 METALS & INORGANICS PKG (SOIL)

Maxxam ID		SK6013	SK6013		SK6015		
Sampling Date		2013/07/25	2013/07/25		2013/07/25		
COC Number	Unite	428431-01-01	428431-01-01	OC Datab	428431-01-01		
	Units	BH4(12'.5-14'.2) YONGE SUBWAY EXTENSION	BH4(12'.5-14'.2) YONGE SUBWAY EXTENSION Lab-Dup	QC Batch	BH5(2'.5-4'.5) YONGE SUBWAY EXTENSION	RDL	QC Batch
Calculated Parameters							
Sodium Adsorption Ratio	N/A	0.35		3297687	0.27		3297687
Inorganics							
Chromium (VI)	ug/g	ND		3299513	ND	0.2	3299513
Conductivity	mS/cm	0.28		3300619	0.15	0.002	3300619
Free Cyanide	ug/g	ND	ND	3299379	ND	0.01	3299379
Moisture	%	12		3299336	8.4	1.0	3299336
Available (CaCl2) pH	pН	7.65		3300312	7.51		3300523
Metals							
Hot Water Ext. Boron (B)	ug/g	0.061		3300621	0.095	0.050	3300621
Acid Extractable Antimony (Sb)	ug/g	ND		3300582	ND	0.20	3300582
Acid Extractable Arsenic (As)	ug/g	2.2		3300582	2.5	1.0	3300582
Acid Extractable Barium (Ba)	ug/g	76		3300582	60	0.50	3300582
Acid Extractable Beryllium (Be)	ug/g	0.40		3300582	0.39	0.20	3300582
Acid Extractable Boron (B)	ug/g	ND		3300582	ND	5.0	3300582
Acid Extractable Cadmium (Cd)	ug/g	ND		3300582	ND	0.10	3300582
Acid Extractable Chromium (Cr)	ug/g	15		3300582	14	1.0	3300582
Acid Extractable Cobalt (Co)	ug/g	8.6		3300582	6.4	0.10	3300582
Acid Extractable Copper (Cu)	ug/g	14		3300582	13	0.50	3300582
Acid Extractable Lead (Pb)	ug/g	7.4		3300582	7.3	1.0	3300582
Acid Extractable Molybdenum (Mo)	ug/g	ND		3300582	ND	0.50	3300582
Acid Extractable Nickel (Ni)	ug/g	18		3300582	14	0.50	3300582
Acid Extractable Selenium (Se)	ug/g	ND		3300582	ND	0.50	3300582
Acid Extractable Silver (Ag)	ug/g	ND		3300582	ND	0.20	3300582
Acid Extractable Thallium (TI)	ug/g	0.14		3300582	0.10	0.050	3300582
Acid Extractable Uranium (U)	ug/g	0.41		3300582	0.40	0.050	3300582
Acid Extractable Vanadium (V)	ug/g	23		3300582	21	5.0	3300582
Acid Extractable Zinc (Zn)	ug/g	34		3300582	32	5.0	3300582
Acid Extractable Mercury (Hg)	ug/g	ND		3300582	ND	0.050	3300582

ND = Not detected RDL = Reportable Detection Limit

Ecoplans Limited Client Project #: YONGE SUBWAY EXTENSION

O'REG 153 METALS & INORGANICS PKG (SOIL)

Maxxam ID		SK6018	SK6019		SK6020	SK6022		
Sampling Date		2013/07/25	2013/07/25		2013/07/25	2013/07/25		
COC Number	Unito	428431-01-01	428431-01-01	QC Batch	428431-01-01	428431-01-01	RDL	QC Batch
	Units	BH5(27'.5-29'.5) YONGE SUBWAY EXTENSION	D1		D2	MW4(2'.5-4'.5) YONGE SUBWAY EXTENSION	RDL	
Calculated Parameters								
Sodium Adsorption Ratio	N/A	0.26	0.24	3297687	0.25	0.36		3297687
Inorganics								
Chromium (VI)	ug/g	ND	ND	3299513	ND	ND	0.2	3299513
Conductivity	mS/cm	0.18	0.20	3300619	0.23	0.27	0.002	3300619
Free Cyanide	ug/g	ND	ND	3299379	ND	ND	0.01	3299379
Moisture	%	9.4	11	3299336	10	9.9	1.0	3299336
Available (CaCl2) pH	pН	6.98	7.56	3300511	7.97	7.60		3300312
Metals								
Hot Water Ext. Boron (B)	ug/g	0.077	0.10	3300621	0.12	0.10	0.050	3300621
Acid Extractable Antimony (Sb)	ug/g	ND	ND	3300582	ND	ND	0.20	3300582
Acid Extractable Arsenic (As)	ug/g	2.2	2.3	3300582	2.8	3.1	1.0	3300582
Acid Extractable Barium (Ba)	ug/g	48	58	3300582	62	79	0.50	3300582
Acid Extractable Beryllium (Be)	ug/g	0.32	0.38	3300582	0.45	0.42	0.20	3300582
Acid Extractable Boron (B)	ug/g	ND	ND	3300582	6.3	ND	5.0	3300582
Acid Extractable Cadmium (Cd)	ug/g	ND	ND	3300582	ND	ND	0.10	3300582
Acid Extractable Chromium (Cr)	ug/g	12	14	3300582	16	17	1.0	3300582
Acid Extractable Cobalt (Co)	ug/g	5.4	6.2	3300582	7.9	8.4	0.10	3300582
Acid Extractable Copper (Cu)	ug/g	11	12	3300582	15	16	0.50	3300582
Acid Extractable Lead (Pb)	ug/g	5.2	6.9	3300582	7.7	7.9	1.0	3300582
Acid Extractable Molybdenum (Mo)	ug/g	ND	ND	3300582	ND	ND	0.50	3300582
Acid Extractable Nickel (Ni)	ug/g	12	13	3300582	18	19	0.50	3300582
Acid Extractable Selenium (Se)	ug/g	ND	ND	3300582	ND	ND	0.50	3300582
Acid Extractable Silver (Ag)	ug/g	ND	ND	3300582	ND	ND	0.20	3300582
Acid Extractable Thallium (TI)	ug/g	0.072	0.10	3300582	0.079	0.11	0.050	3300582
Acid Extractable Uranium (U)	ug/g	0.54	0.42	3300582	0.59	0.83	0.050	3300582
Acid Extractable Vanadium (V)	ug/g	18	21	3300582	23	23	5.0	3300582
Acid Extractable Zinc (Zn)	ug/g	27	32	3300582	38	39	5.0	3300582
Acid Extractable Mercury (Hg)	ug/g	ND	ND	3300582	ND	ND	0.050	3300582

ND = Not detected

RDL = Reportable Detection Limit

Ecoplans Limited Client Project #: YONGE SUBWAY EXTENSION

O'REG 153 METALS & INORGANICS PKG (SOIL)

Maxxam ID		SK6025	SK6025	SK6028		SK6032		
Sampling Date		2013/07/25	2013/07/25	2013/07/24		2013/07/24		
COC Number		428431-01-01	428431-01-01	428431-01-01		428431-01-01		
	Units	MW4(27'.5-28.7") YONGE SUBWAY EXTENSION	MW4(27'.5-28.7") YONGE SUBWAY EXTENSION Lab-Dup	MW5(2'.5-4'.5) YONGE SUBWAY EXTENSION	QC Batch	MW5(27'.5-29'.5) YONGE SUBWAY EXTENSION	RDL	QC Batch
Calculated Parameters								
Sodium Adsorption Ratio	N/A	0.22		0.26	3297687	0.23		3297687
Inorganics								
Chromium (VI)	ug/g	ND	ND	ND	3299513	ND	0.2	3299513
Conductivity	mS/cm	0.24		0.16	3300619	0.27	0.002	3300619
Free Cyanide	ug/g	ND		ND	3299379	ND	0.01	3299379
Moisture	%	14		13	3299336	14	1.0	3299336
Available (CaCl2) pH	pН	7.70		7.40	3300511	7.84		3300312
Metals								
Hot Water Ext. Boron (B)	ug/g	0.11		0.11	3300621	0.089	0.050	3300621
Acid Extractable Antimony (Sb)	ug/g	ND		ND	3300582	ND	0.20	3300582
Acid Extractable Arsenic (As)	ug/g	3.0		2.6	3300582	4.2	1.0	3300582
Acid Extractable Barium (Ba)	ug/g	76		73	3300582	81	0.50	3300582
Acid Extractable Beryllium (Be)	ug/g	0.45		0.50	3300582	0.65	0.20	3300582
Acid Extractable Boron (B)	ug/g	7.3		5.4	3300582	6.2	5.0	3300582
Acid Extractable Cadmium (Cd)	ug/g	ND		ND	3300582	ND	0.10	3300582
Acid Extractable Chromium (Cr)	ug/g	19		16	3300582	22	1.0	3300582
Acid Extractable Cobalt (Co)	ug/g	8.1		7.4	3300582	12	0.10	3300582
Acid Extractable Copper (Cu)	ug/g	19		15	3300582	22	0.50	3300582
Acid Extractable Lead (Pb)	ug/g	8.2		8.5	3300582	12	1.0	3300582
Acid Extractable Molybdenum (Mo)	ug/g	ND		ND	3300582	ND	0.50	3300582
Acid Extractable Nickel (Ni)	ug/g	19		16	3300582	27	0.50	3300582
Acid Extractable Selenium (Se)	ug/g	ND		ND	3300582	ND	0.50	3300582
Acid Extractable Silver (Ag)	ug/g	ND		ND	3300582	ND	0.20	3300582
Acid Extractable Thallium (TI)	ug/g	0.13		0.13	3300582	0.090	0.050	3300582
Acid Extractable Uranium (U)	ug/g	0.71		0.42	3300582	0.67	0.050	3300582
Acid Extractable Vanadium (V)	ug/g	25		25	3300582	26	5.0	3300582
Acid Extractable Zinc (Zn)	ug/g	38		38	3300582	56	5.0	3300582
Acid Extractable Mercury (Hg)	ug/g	ND		ND	3300582	ND	0.050	3300582

ND = Not detected

RDL = Reportable Detection Limit

Maxxam Job #: B3C2252 Report Date: 2013/08/02

O'REG 153 PAHS (SOIL)

Maxxam ID		SK6008	SK6009	SK6016	SK6023	SK6024		
Sampling Date		2013/07/25	2013/07/25	2013/07/25	2013/07/25	2013/07/25		
COC Number	Units	428431-01-01 BH7(15'-17') YONGE SUBWAY EXTENSION	428431-01-01 BH4(0-2') YONGE SUBWAY EXTENSION	428431-01-01 BH5(5'-7') YONGE SUBWAY EXTENSION	428431-01-01 MW4(5'-7') YONGE SUBWAY EXTENSION	428431-01-01 MW4(12'.5-13'.3") YONGE SUBWAY EXTENSION	RDL	QC Batch
Inorganics								
Moisture	%	8.4	8.0	11	10	13	1.0	3299390
Calculated Parameters								
Methylnaphthalene, 2-(1-)	ug/g	ND	ND	ND	ND	ND	0.0071	3297326
Polyaromatic Hydrocarbons								
Acenaphthene	ug/g	ND	ND	ND	ND	ND	0.0050	3298946
Acenaphthylene	ug/g	ND	0.0052	ND	ND	ND	0.0050	3298946
Anthracene	ug/g	ND	0.0052	ND	ND	ND	0.0050	3298946
Benzo(a)anthracene	ug/g	ND	0.021	ND	ND	ND	0.0050	3298946
Benzo(a)pyrene	ug/g	ND	0.019	ND	ND	ND	0.0050	3298946
Benzo(b/j)fluoranthene	ug/g	ND	0.027	ND	ND	ND	0.0050	3298946
Benzo(g,h,i)perylene	ug/g	ND	0.017	ND	ND	ND	0.0050	3298946
Benzo(k)fluoranthene	ug/g	ND	0.0087	ND	ND	ND	0.0050	3298946
Chrysene	ug/g	ND	0.022	ND	ND	ND	0.0050	3298946
Dibenz(a,h)anthracene	ug/g	ND	ND	ND	ND	ND	0.0050	3298946
Fluoranthene	ug/g	ND	0.039	ND	0.0052	ND	0.0050	3298946
Fluorene	ug/g	ND	ND	ND	ND	ND	0.0050	3298946
Indeno(1,2,3-cd)pyrene	ug/g	ND	0.016	ND	ND	ND	0.0050	3298946
1-Methylnaphthalene	ug/g	ND	ND	ND	ND	ND	0.0050	3298946
2-Methylnaphthalene	ug/g	ND	ND	ND	ND	ND	0.0050	3298946
Naphthalene	ug/g	ND	ND	ND	ND	ND	0.0050	3298946
Phenanthrene	ug/g	ND	0.022	ND	ND	ND	0.0050	3298946
Pyrene	ug/g	ND	0.039	ND	0.0052	ND	0.0050	3298946
Surrogate Recovery (%)								
D10-Anthracene	%	92	86	88	90	92		3298946
D14-Terphenyl (FS)	%	97	89	98	98	96		3298946
D8-Acenaphthylene	%	86	78	82	83	85		3298946

ND = Not detected

RDL = Reportable Detection Limit

Maxxam Job #: B3C2252 Report Date: 2013/08/02

O'REG 153 PAHS (SOIL)

Maxxam ID		SK6026	SK6027	SK6027	SK6029	SK6030		
Sampling Date		2013/07/25	2013/07/25	2013/07/25	2013/07/24	2013/07/24		
COC Number	Units	428431-01-01 D3	428431-01-01 D4	428431-01-01 D4 Lab-Dup	428431-01-01 MW5(8'.5-9'.5) YONGE SUBWAY EXTENSION	428431-01-01 MW5(10'-12') YONGE SUBWAY EXTENSION	RDL	QC Batc
Inorganics								
Moisture	%	8.7	16		17	18	1.0	3299390
Calculated Parameters								
Methylnaphthalene, 2-(1-)	ug/g	ND	ND		ND	ND	0.0071	3297326
Polyaromatic Hydrocarbons								
Acenaphthene	ug/g	ND	ND	ND	ND	ND	0.0050	3298946
Acenaphthylene	ug/g	ND	ND	ND	ND	ND	0.0050	3298946
Anthracene	ug/g	ND	ND	ND	ND	ND	0.0050	3298946
Benzo(a)anthracene	ug/g	ND	ND	ND	ND	ND	0.0050	3298946
Benzo(a)pyrene	ug/g	ND	ND	ND	ND	ND	0.0050	3298946
Benzo(b/j)fluoranthene	ug/g	ND	ND	ND	ND	ND	0.0050	3298946
Benzo(g,h,i)perylene	ug/g	ND	ND	ND	ND	ND	0.0050	3298946
Benzo(k)fluoranthene	ug/g	ND	ND	ND	ND	ND	0.0050	3298946
Chrysene	ug/g	ND	ND	ND	ND	ND	0.0050	3298946
Dibenz(a,h)anthracene	ug/g	ND	ND	ND	ND	ND	0.0050	3298946
Fluoranthene	ug/g	ND	ND	ND	ND	ND	0.0050	3298946
Fluorene	ug/g	ND	ND	ND	ND	ND	0.0050	3298946
Indeno(1,2,3-cd)pyrene	ug/g	ND	ND	ND	ND	ND	0.0050	3298946
1-Methylnaphthalene	ug/g	ND	ND	ND	ND	ND	0.0050	3298946
2-Methylnaphthalene	ug/g	ND	ND	ND	ND	ND	0.0050	3298946
Naphthalene	ug/g	ND	ND	ND	ND	ND	0.0050	3298946
Phenanthrene	ug/g	ND	ND	ND	ND	ND	0.0050	3298946
Pyrene	ug/g	ND	ND	ND	ND	ND	0.0050	3298946
Surrogate Recovery (%)								
D10-Anthracene	%	90	85	80	87	90		3298946
D14-Terphenyl (FS)	%	99	96	91	102	104		3298946
D8-Acenaphthylene	%	83	74	70	82	85		3298946

ND = Not detected RDL = Reportable Detection Limit Lab-Dup = Laboratory Initiated Duplicate QC Batch = Quality Control Batch

O'REG 153 PETROLEUM HYDROCARBONS (SOIL)

Maxxam ID		SK6007	SK6007	SK6009	SK6016		SK6021		
Sampling Date		2013/07/24	2013/07/24	2013/07/25	2013/07/25		2013/07/25		
COC Number	Units	428431-01-01 BH7(13'.5-14'.5) YONGE SUBWAY EXTENSION	428431-01-01 BH7(13'.5-14'.5) YONGE SUBWAY EXTENSION	428431-01-01 BH4(0-2') YONGE SUBWAY EXTENSION	428431-01-01 BH5(5'-7') YONGE SUBWAY EXTENSION	QC Batch	428431-01-01 MW4(0-2') YONGE SUBWAY EXTENSION	RDL	QC Batch
		EXTENSION	Lab-Dup						
Inorganics									
Moisture	%	10	10			3299336	9.0	1.0	3299336
BTEX & F1 Hydrocarbons									
Benzene	ug/g	ND		ND	ND	3298693		0.020	
Toluene	ug/g	ND		ND	ND	3298693		0.020	
Ethylbenzene	ug/g	ND		ND	ND	3298693		0.020	
o-Xylene	ug/g	ND		ND	ND	3298693		0.020	
p+m-Xylene	ug/g	ND		ND	ND	3298693		0.040	
Total Xylenes	ug/g	ND		ND	ND	3298693		0.040	
F1 (C6-C10)	ug/g	ND		ND	ND	3298693	ND	10	3299931
F1 (C6-C10) - BTEX	ug/g	ND		ND	ND	3298693	ND	10	3299931
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/g	ND		ND	ND	3298698	ND	10	3298698
F3 (C16-C34 Hydrocarbons)	ug/g	ND		ND	ND	3298698	ND	50	3298698
F4 (C34-C50 Hydrocarbons)	ug/g	ND		ND	ND	3298698	68	50	3298698
Reached Baseline at C50	ug/g	Yes		Yes	Yes	3298698	No		3298698
Surrogate Recovery (%)									
1,4-Difluorobenzene	%	99		100	99	3298693	102		3299931
4-Bromofluorobenzene	%	92		94	96	3298693	105		3299931
D10-Ethylbenzene	%	83		79	78	3298693	109		3299931
D4-1,2-Dichloroethane	%	93		92	93	3298693	93		3299931
o-Terphenyl	%	88		85	87	3298698	88		3298698

RDL = Reportable Detection Limit

O'REG 153 PETROLEUM HYDROCARBONS (SOIL)

Maxxam ID		SK6031	SK6031		
Sampling Date		2013/07/24	2013/07/24		
COC Number	l lucito	428431-01-01	428431-01-01	RDL	QC Batch
	Units	MW5(12'.5-13') YONGE SUBWAY	MW5(12'.5-13') YONGE SUBWAY	RDL	QC Batch
		EXTENSION	EXTENSION Lab-Dup		
Inorganics					
Moisture	%	9.7		1.0	3299336
BTEX & F1 Hydrocarbons					
Benzene	ug/g	ND	ND	0.020	3298693
Toluene	ug/g	ND	ND	0.020	3298693
Ethylbenzene	ug/g	ND	ND	0.020	3298693
o-Xylene	ug/g	ND	ND	0.020	3298693
p+m-Xylene	ug/g	ND	ND	0.040	3298693
Total Xylenes	ug/g	ND	ND	0.040	3298693
F1 (C6-C10)	ug/g	ND	ND	10	3298693
F1 (C6-C10) - BTEX	ug/g	ND	ND	10	3298693
F2-F4 Hydrocarbons					
F2 (C10-C16 Hydrocarbons)	ug/g	ND		10	3298698
F3 (C16-C34 Hydrocarbons)	ug/g	ND		50	3298698
F4 (C34-C50 Hydrocarbons)	ug/g	ND		50	3298698
Reached Baseline at C50	ug/g	Yes			3298698
Surrogate Recovery (%)					
1,4-Difluorobenzene	%	100	99		3298693
4-Bromofluorobenzene	%	93	89		3298693
D10-Ethylbenzene	%	79	79		3298693
D4-1,2-Dichloroethane	%	92	90		3298693
o-Terphenyl	%	85			3298698
ND = Not detected RDL = Reportable Detection I QC Batch = Quality Control B					

O'REG 153 VOLATILE ORGANICS (SOIL)

Maxxam ID		SK6005	SK6011		SK6014		
Sampling Date		2013/07/24	2013/07/25		2013/07/25		
COC Number	Units	428431-01-01 BH7(7'.5-9'.5)	428431-01-01 BH4(7'.5-8'.5)	QC Batch	428431-01-01 D5	RDL	QC Batch
	Units	YONGE SUBWAY EXTENSION	YONGE SUBWAY EXTENSION		5	KDL	
Inorganics							
Moisture	%	16	16	3299442	14	1.0	3300191
Calculated Parameters							
1,3-Dichloropropene (cis+trans)	ug/g	ND	ND	3297327	ND	0.050	3297327
Volatile Organics							
Acetone (2-Propanone)	ug/g	ND	ND	3298850	ND	0.50	3298850
Benzene	ug/g	ND	ND	3298850	ND	0.020	3298850
Bromodichloromethane	ug/g	ND	ND	3298850	ND	0.050	3298850
Bromoform	ug/g	ND	ND	3298850	ND	0.050	3298850
Bromomethane	ug/g	ND	ND	3298850	ND	0.050	3298850
Carbon Tetrachloride	ug/g	ND	ND	3298850	ND	0.050	3298850
Chlorobenzene	ug/g	ND	ND	3298850	ND	0.050	3298850
Chloroform	ug/g	ND	ND	3298850	ND	0.050	3298850
Dibromochloromethane	ug/g	ND	ND	3298850	ND	0.050	3298850
1,2-Dichlorobenzene	ug/g	ND	ND	3298850	ND	0.050	3298850
1,3-Dichlorobenzene	ug/g	ND	ND	3298850	ND	0.050	3298850
1,4-Dichlorobenzene	ug/g	ND	ND	3298850	ND	0.050	3298850
Dichlorodifluoromethane (FREON 12)	ug/g	ND	ND	3298850	ND	0.050	3298850
1,1-Dichloroethane	ug/g	ND	ND	3298850	ND	0.050	3298850
1,2-Dichloroethane	ug/g	ND	ND	3298850	ND	0.050	3298850
1,1-Dichloroethylene	ug/g	ND	ND	3298850	ND	0.050	3298850
cis-1,2-Dichloroethylene	ug/g	ND	ND	3298850	ND	0.050	3298850
trans-1,2-Dichloroethylene	ug/g	ND	ND	3298850	ND	0.050	3298850
1,2-Dichloropropane	ug/g	ND	ND	3298850	ND	0.050	3298850
cis-1,3-Dichloropropene	ug/g	ND	ND	3298850	ND	0.030	3298850
trans-1,3-Dichloropropene	ug/g	ND	ND	3298850	ND	0.040	3298850
Ethylbenzene	ug/g	ND	ND	3298850	ND	0.020	3298850
Ethylene Dibromide	ug/g	ND	ND	3298850	ND	0.050	3298850
Hexane	ug/g	ND	ND	3298850	ND	0.050	3298850
Methylene Chloride(Dichloromethane)	ug/g	ND	ND	3298850	ND	0.050	3298850
Methyl Isobutyl Ketone	ug/g	ND	ND	3298850	ND	0.50	3298850

ND = Not detected

RDL = Reportable Detection Limit

Ecoplans Limited Client Project #: YONGE SUBWAY EXTENSION

O'REG 153 VOLATILE ORGANICS (SOIL)

Maxxam ID		SK6005	SK6011		SK6014		
Sampling Date		2013/07/24	2013/07/25		2013/07/25		
COC Number	L luite	428431-01-01	428431-01-01	OC Detak	428431-01-01		00 Datah
	Units	BH7(7'.5-9'.5) YONGE SUBWAY EXTENSION	BH4(7'.5-8'.5) YONGE SUBWAY EXTENSION	QC Batch	D5	RDL	QC Batch
	1		i	1			1
Methyl Ethyl Ketone (2-Butanone)	ug/g	ND	ND	3298850	ND	0.50	3298850
Methyl t-butyl ether (MTBE)	ug/g	ND	ND	3298850	ND	0.050	3298850
Styrene	ug/g	ND	ND	3298850	ND	0.050	3298850
1,1,1,2-Tetrachloroethane	ug/g	ND	ND	3298850	ND	0.050	3298850
1,1,2,2-Tetrachloroethane	ug/g	ND	ND	3298850	ND	0.050	3298850
Tetrachloroethylene	ug/g	ND	ND	3298850	ND	0.050	3298850
Toluene	ug/g	ND	ND	3298850	ND	0.020	3298850
1,1,1-Trichloroethane	ug/g	ND	ND	3298850	ND	0.050	3298850
1,1,2-Trichloroethane	ug/g	ND	ND	3298850	ND	0.050	3298850
Trichloroethylene	ug/g	ND	ND	3298850	ND	0.050	3298850
Vinyl Chloride	ug/g	ND	ND	3298850	ND	0.020	3298850
p+m-Xylene	ug/g	ND	ND	3298850	ND	0.020	3298850
o-Xylene	ug/g	ND	ND	3298850	ND	0.020	3298850
Xylene (Total)	ug/g	ND	ND	3298850	ND	0.020	3298850
Trichlorofluoromethane (FREON 11)	ug/g	ND	ND	3298850	ND	0.050	3298850
Surrogate Recovery (%)							
4-Bromofluorobenzene	%	94	94	3298850	94		3298850
D10-o-Xylene	%	114	115	3298850	108		3298850
D4-1,2-Dichloroethane	%	104	106	3298850	106		3298850
D8-Toluene	%	101	100	3298850	102		3298850

RDL = Reportable Detection Limit

Ecoplans Limited Client Project #: YONGE SUBWAY EXTENSION

O'REG 153 VOLATILE ORGANICS (SOIL)

Maxxam ID		SK6017	SK6021	SK6029		
Sampling Date		2013/07/25	2013/07/25	2013/07/24		
COC Number	Units	428431-01-01	428431-01-01	428431-01-01	RDL	QC Batch
	Units	BH5(21'3"-22') YONGE SUBWAY EXTENSION	MW4(0-2') YONGE SUBWAY EXTENSION	MW5(8'.5-9'.5) YONGE SUBWAY EXTENSION		
Inorganics						
Moisture	%	16			1.0	3299442
Calculated Parameters						
1,3-Dichloropropene (cis+trans)	ug/g	ND	ND	ND	0.050	3297327
Volatile Organics						
Acetone (2-Propanone)	ug/g	ND	ND	ND	0.50	3298850
Benzene	ug/g	ND	ND	ND	0.020	3298850
Bromodichloromethane	ug/g	ND	ND	ND	0.050	3298850
Bromoform	ug/g	ND	ND	ND	0.050	3298850
Bromomethane	ug/g	ND	ND	ND	0.050	3298850
Carbon Tetrachloride	ug/g	ND	ND	ND	0.050	3298850
Chlorobenzene	ug/g	ND	ND	ND	0.050	3298850
Chloroform	ug/g	ND	ND	ND	0.050	3298850
Dibromochloromethane	ug/g	ND	ND	ND	0.050	3298850
1,2-Dichlorobenzene	ug/g	ND	ND	ND	0.050	3298850
1,3-Dichlorobenzene	ug/g	ND	ND	ND	0.050	3298850
1,4-Dichlorobenzene	ug/g	ND	ND	ND	0.050	3298850
Dichlorodifluoromethane (FREON 12)	ug/g	ND	ND	ND	0.050	3298850
1,1-Dichloroethane	ug/g	ND	ND	ND	0.050	3298850
1,2-Dichloroethane	ug/g	ND	ND	ND	0.050	3298850
1,1-Dichloroethylene	ug/g	ND	ND	ND	0.050	3298850
cis-1,2-Dichloroethylene	ug/g	ND	ND	ND	0.050	3298850
trans-1,2-Dichloroethylene	ug/g	ND	ND	ND	0.050	3298850
1,2-Dichloropropane	ug/g	ND	ND	ND	0.050	3298850
cis-1,3-Dichloropropene	ug/g	ND	ND	ND	0.030	3298850
trans-1,3-Dichloropropene	ug/g	ND	ND	ND	0.040	3298850
Ethylbenzene	ug/g	ND	ND	ND	0.020	3298850
Ethylene Dibromide	ug/g	ND	ND	ND	0.050	3298850
Hexane	ug/g	ND	ND	ND	0.050	3298850
Methylene Chloride(Dichloromethane)	ug/g	ND	ND	ND	0.050	3298850
Methyl Isobutyl Ketone	ug/g	ND	ND	ND	0.50	3298850

ND = Not detected

RDL = Reportable Detection Limit

Ecoplans Limited Client Project #: YONGE SUBWAY EXTENSION

O'REG 153 VOLATILE ORGANICS (SOIL)

Sampling Date		SK6017	SK6021	SK6029		
		2013/07/25	2013/07/25	2013/07/24		
COC Number		428431-01-01	428431-01-01	428431-01-01		
	Units	BH5(21'3"-22') YONGE	MW4(0-2') YONGE	MW5(8'.5-9'.5) YONGE	RDL	QC Batch
		SUBWAY	SUBWAY	SUBWAY		
		EXTENSION	EXTENSION	EXTENSION		
		EXTENSION	EXTENSION	EXTENSION		
Methyl Ethyl Ketone (2-Butanone)	ug/g	ND	ND	ND	0.50	3298850
Methyl t-butyl ether (MTBE)	ug/g	ND	ND	ND	0.050	3298850
Styrene	ug/g	ND	ND	ND	0.050	3298850
1,1,1,2-Tetrachloroethane	ug/g	ND	ND	ND	0.050	3298850
1,1,2,2-Tetrachloroethane	ug/g	ND	ND	ND	0.050	3298850
Tetrachloroethylene	ug/g	ND	ND	ND	0.050	3298850
Toluene	ug/g	ND	ND	ND	0.020	3298850
1,1,1-Trichloroethane	ug/g	ND	ND	ND	0.050	3298850
1,1,2-Trichloroethane	ug/g	ND	ND	ND	0.050	3298850
Trichloroethylene	ug/g	ND	ND	ND	0.050	3298850
Vinyl Chloride	ug/g	ND	ND	ND	0.020	3298850
p+m-Xylene	ug/g	ND	ND	ND	0.020	3298850
o-Xylene	ug/g	ND	ND	ND	0.020	3298850
Xylene (Total)	ug/g	ND	ND	ND	0.020	3298850
Trichlorofluoromethane (FREON 11)	ug/g	ND	ND	ND	0.050	3298850
Surrogate Recovery (%)						
4-Bromofluorobenzene	%	94	95	94		3298850
D10-o-Xylene	%	127	115	122		3298850
D4-1,2-Dichloroethane	%	107	110	110		3298850
D8-Toluene	%	101	101	99		3298850

RDL = Reportable Detection Limit

Ecoplans Limited Client Project #: YONGE SUBWAY EXTENSION

Maxxam ID		SK6012	SK6022	
Sampling Date		2013/07/25	2013/07/25	
COC Number		428431-01-01	428431-01-01	
	Units	BH4(10-12') YONGE SUBWAY EXTENSION	MW4(2'.5-4'.5) YONGE SUBWAY EXTENSION	QC Batch
Miscellaneous Parameters				
Miscellaneous Parameters Grain Size	%	FINE	FINE	3300131
	%	FINE 61	FINE 71	3300131 3300131

RESULTS OF ANALYSES OF SOIL

Maxxam Job #: B3C2252 Report Date: 2013/08/02

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		SK6021		
Sampling Date		2013/07/25		
COC Number		428431-01-01		
	Units	MW4(0-2') YONGE SUBWAY EXTENSION	RDL	QC Batch
F2-F4 Hydrocarbons				
F4G-sg (Grav. Heavy Hydrocarbons)	ug/g	180	100	3301361
RDL = Reportable Detection Limit QC Batch = Quality Control Batch				

Petroleum Hydrocarbons F2-F4 in Soil

Moisture

Maxxam Job #: B3C2252 Report Date: 2013/08/02 Ecoplans Limited Client Project #: YONGE SUBWAY EXTENSION

Test Summary

Maxxam ID SK6004 Sample ID BH7(0-2') YONGE SUB Matrix Soil	WAY EXTENSION				Collected 2013/07/24 Shipped 2013/07/26
Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Hot Water Extractable Boron	ICP	3300848	2013/08/01	2013/08/02	Azita Fazaeli
Free (WAD) Cyanide	TECH	3299379	N/A	2013/08/01	Louise Harding
Conductivity	COND	3300619	N/A	2013/08/01	Lemeneh Addis
Hexavalent Chromium in Soil by IC	IC/SPEC	3299513	2013/07/31	2013/07/31	Yogesh Patel
Acid Extr. Metals (aqua regia) by ICPMS	ICP/MS	3300582	2013/08/01	2013/08/01	Viviana Canzonieri
Aoisture	BAL	3299336	N/A	2013/07/31	Min Yang
DH CaCl2 EXTRACT		3300312	2013/08/01	2013/08/01	Surinder Rai
Sodium Adsorption Ratio (SAR)	CALC/MET	3297687	2013/08/02	2013/08/02	Automated Statchk
Maxxam ID SK6004 Dup Sample ID BH7(0-2') YONGE SUBV Matrix Soil	WAY EXTENSION				Collected 2013/07/24 Shipped 2013/07/26
Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Hot Water Extractable Boron	ICP	3300848	2013/08/01	2013/08/02	Azita Fazaeli
Test Description 1,3-Dichloropropene Sum	Instrumentation CALC	Batch 3297327	Extracted N/A	Analyzed 2013/08/02	Analyst Automated Statchk
Noisture	BAL	3299442	N/A N/A	2013/07/31	Min Yang
Volatile Organic Compounds in Soil	P&T/MS	3298850	2013/07/31	2013/08/01	Rebecca Schultz
Maxxam ID SK6006 Sample ID BH7(10'-12') YONGE SU Matrix Soil	JBWAY EXTENSION				Collected 2013/07/24 Shipped 2013/07/26
Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
lot Water Extractable Boron	ICP	3300621	2013/08/01	2013/08/02	Azita Fazaeli
ree (WAD) Cyanide	TECH	3299379	N/A	2013/08/01	Louise Harding
Conductivity	COND	3300619	N/A	2013/08/01	Lemeneh Addis
Hexavalent Chromium in Soil by IC	IC/SPEC	3299513	2013/07/31	2013/07/31	Yogesh Patel
Acid Extr. Metals (aqua regia) by ICPMS	ICP/MS	3300582	2013/08/01	2013/08/01	Viviana Canzonieri
<i>N</i> oisture	BAL	3299336	N/A	2013/07/31	Min Yang
		3300312	2013/08/01	2013/08/01	Surinder Rai
H CaCl2 EXTRACT				0040/00/00	
	CALC/MET	3297687	2013/08/02	2013/08/02	Automated Statchk
			2013/08/02	2013/08/02	Automated Statchk Collected 2013/07/24 Shipped Received 2013/07/26
Sodium Adsorption Ratio (SAR) Maxxam ID SK6007 Sample ID BH7(13'.5-14'.5) YONGE Matrix Soil Test Description	E SUBWAY EXTENSIO	N Batch	Extracted	Analyzed	Collected 2013/07/24 Shipped Received 2013/07/26 Analyst
Sample ID BH7(13'.5-14'.5) YONGE	E SUBWAY EXTENSIO	N			Collected 2013/07/24 Shipped 2013/07/26

Page 17 of 35

3298698

3299336

2013/07/30

N/A

2013/08/01

2013/07/31

Zhiyue (Frank) Zhu

Min Yang

GC/FID

BAL

	SK6007 Dup BH7(13'.5-14'.5) YONGE Soil	SUBWAY EXTENSIC	N			Collected 2013/07/24 Shipped 2013/07/26
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst
Moisture		BAL	3299336	N/A	2013/07/31	Min Yang
Maxxam ID Sample ID Matrix	BH7(15'-17') YONGE SUE	WAY EXTENSION				Collected 2013/07/25 Shipped 2013/07/26
Test Description		Instrumentation	Batch	Extracted	Analyzed	Analyst
Nethylnaphthalene	e Sum	CALC	3297326	N/A	2013/08/01	Automated Statchk
Moisture		BAL	3299390	N/A	2013/07/31	Min Yang
	in Soil by GC/MS (SIM)	GC/MS	3298946	2013/07/31	2013/08/01	Darryl Tiller
Matrix Fest Description	BH4(0-2') YONGE SUBW. Soil	Instrumentation	Batch	Extracted	Analyzod	Shipped Received 2013/07/26
Methylnaphthalene	- Cum	CALC	3297326	N/A	Analyzed 2013/08/01	Analyst Automated Statchk
	CCME F1 & BTEX in Soil		3297326	2013/07/30	2013/08/01	Mamdouh Salib
	arbons F2-F4 in Soil	GC/FID	3298698	2013/07/30	2013/07/31	Zhiyue (Frank) Zhu
Aoisture		BAL	3299390	N/A	2013/07/31	Min Yang
	in Soil by GC/MS (SIM)	GC/MS	3298946	2013/07/31	2013/08/01	Darryl Tiller
Maxxam ID Sample ID Matrix Fest Description	BH4(2'.5-4'.5) YONGE SU	IBWAY EXTENSION	Batch	Extracted	Analyzed	Collected 2013/07/25 Shipped Received 2013/07/26 Analyst
lot Water Extracta	able Boron	ICP	3300621	2013/08/01	2013/08/02	Azita Fazaeli
ree (WAD) Cyani	ide	TECH	3299379	N/A	2013/08/01	Louise Harding
Conductivity		COND	3300619	N/A	2013/08/01	Lemeneh Addis
lexavalent Chrom	nium in Soil by IC	IC/SPEC	3299513	2013/07/31	2013/07/31	Yogesh Patel
Acid Extr. Metals (aqua regia) by ICPMS	ICP/MS	3300582	2013/08/01	2013/08/01	Viviana Canzonieri
Noisture		BAL	3299336	N/A	2013/07/31	Min Yang
H CaCl2 EXTRA			3300312	2013/08/01	2013/08/01	Surinder Rai
Sodium Adsorptior	n Ratio (SAR)	CALC/MET	3297687	2013/08/02	2013/08/02	Automated Statchk
Maxxam ID	SK6011 BH4(7'.5-8'.5) YONGE SU	IBWAY EXTENSION				Collected 2013/07/25 Shipped

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	3297327	N/A	2013/08/02	Automated Statchk
Moisture	BAL	3299442	N/A	2013/07/31	Min Yang
Volatile Organic Compounds in Soil	P&T/MS	3298850	2013/07/31	2013/08/01	Rebecca Schultz

Maxxam ID SK6012 Sample ID BH4(10-12') YONGE SU Matrix Soil					Collected 2013/07/25 Shipped 2013/07/26
Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Sieve, 75um	PSIV	3300131	N/A	2013/07/31	Min Yang
Maxxam ID SK6013 Sample ID BH4(12'.5-14'.2) YONGE Matrix Soil	E SUBWAY EXTENSIO	DN			Collected 2013/07/25 Shipped 2013/07/26
Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Hot Water Extractable Boron	ICP	3300621	2013/08/01	2013/08/02	Azita Fazaeli
Free (WAD) Cyanide	TECH	3299379	N/A	2013/08/01	Louise Harding
Conductivity	COND	3300619	N/A	2013/08/01	Lemeneh Addis
Hexavalent Chromium in Soil by IC	IC/SPEC	3299513	2013/07/31	2013/07/31	Yogesh Patel
Acid Extr. Metals (aqua regia) by ICPMS	ICP/MS	3300582	2013/08/01	2013/08/01	Viviana Canzonieri
Moisture	BAL	3299336	N/A	2013/07/31	Min Yang
pH CaCl2 EXTRACT		3300312	2013/08/01	2013/08/01	Surinder Rai
Sodium Adsorption Ratio (SAR)	CALC/MET	3297687	2013/08/02	2013/08/02	Automated Statchk
Sample ID BH4(12'.5-14'.2) YONGE					Shipped
Matrix Soil Test Description	Instrumentation	Batch	Extracted	Analyzed	Received 2013/07/26 Analyst
	Instrumentation TECH	Batch 3299379	Extracted N/A	Analyzed 2013/08/01	
Test Description					Analyst
Test Description Free (WAD) Cyanide Maxxam ID SK6014 Sample ID D5 Matrix Soil Test Description	TECH	3299379 Batch	N/A Extracted	2013/08/01 Analyzed	Analyst Louise Harding Collected 2013/07/25 Shipped Received 2013/07/26 Analyst
Test Description Free (WAD) Cyanide Maxxam ID SK6014 Sample ID D5 Matrix Soil	TECH Instrumentation CALC	3299379 Batch 3297327	N/A Extracted N/A	2013/08/01 Analyzed 2013/08/02	Analyst Louise Harding Collected 2013/07/25 Shipped Received 2013/07/26 Analyst Automated Statchk
Test Description Free (WAD) Cyanide Maxxam ID SK6014 Sample ID D5 Matrix Soil Test Description 1,3-Dichloropropene Sum Moisture	TECH Instrumentation CALC BAL	3299379 Batch 3297327 3300191	N/A Extracted N/A N/A	2013/08/01 Analyzed 2013/08/02 2013/08/01	Analyst Louise Harding Collected 2013/07/25 Shipped Received 2013/07/26 Analyst Automated Statchk Min Yang
Test Description Free (WAD) Cyanide Maxxam ID SK6014 Sample ID D5 Matrix Soil Test Description 1,3-Dichloropropene Sum	TECH Instrumentation CALC	3299379 Batch 3297327	N/A Extracted N/A	2013/08/01 Analyzed 2013/08/02	Analyst Louise Harding Collected 2013/07/25 Shipped Received 2013/07/26 Analyst Automated Statchk
Test Description Free (WAD) Cyanide Maxxam ID SK6014 Sample ID D5 Matrix Soil Test Description 1,3-Dichloropropene Sum Moisture Volatile Organic Compounds in Soil Maxxam ID SK6015 Sample ID BH5(2'.5-4'.5) YONGE S Matrix Soil	TECH Instrumentation CALC BAL P&T/MS SUBWAY EXTENSION	3299379 Batch 3297327 3300191 3298850	N/A Extracted N/A N/A 2013/07/31	2013/08/01 Analyzed 2013/08/02 2013/08/01 2013/08/01	Analyst Louise Harding Collected 2013/07/25 Shipped Received 2013/07/26 Analyst Automated Statchk Min Yang Rebecca Schultz Collected 2013/07/25 Shipped Received 2013/07/25 Shipped Received 2013/07/26
Test Description Free (WAD) Cyanide Maxxam ID SK6014 Sample ID D5 Matrix Soil Test Description 1,3-Dichloropropene Sum Moisture Volatile Organic Compounds in Soil Maxxam ID SK6015 Sample ID BH5(2'.5-4'.5) YONGE S Matrix Soil Test Description	TECH Instrumentation CALC BAL P&T/MS SUBWAY EXTENSION Instrumentation	3299379 Batch 3297327 3300191 3298850 Batch	N/A Extracted N/A 2013/07/31 Extracted	2013/08/01 Analyzed 2013/08/02 2013/08/01 2013/08/01 Analyzed	Analyst Louise Harding Collected 2013/07/25 Shipped Received 2013/07/26 Analyst Automated Statchk Min Yang Rebecca Schultz Collected 2013/07/25 Shipped Received 2013/07/26 Analyst
Test Description Free (WAD) Cyanide Maxxam ID SK6014 Sample ID D5 Matrix Soil Test Description 1,3-Dichloropropene Sum Moisture Volatile Organic Compounds in Soil Maxxam ID SK6015 Sample ID BH5(2'.5-4'.5) YONGE S Matrix Soil Test Description Hot Water Extractable Boron	TECH Instrumentation CALC BAL P&T/MS SUBWAY EXTENSION Instrumentation ICP	3299379 Batch 3297327 3300191 3298850 Batch 3300621	N/A Extracted N/A N/A 2013/07/31 Extracted 2013/08/01	2013/08/01 Analyzed 2013/08/02 2013/08/01 2013/08/01 Analyzed 2013/08/02	Analyst Louise Harding Collected 2013/07/25 Shipped Received 2013/07/26 Analyst Automated Statchk Min Yang Rebecca Schultz Collected 2013/07/25 Shipped Received 2013/07/26 Analyst Azita Fazaeli
Test Description Free (WAD) Cyanide Maxxam ID SK6014 Sample ID D5 Matrix Soil Test Description 1,3-Dichloropropene Sum Moisture Volatile Organic Compounds in Soil Maxxam ID SK6015 Sample ID BH5(2'.5-4'.5) YONGE S Matrix Soil Test Description Hot Water Extractable Boron Hot Water Extractable Boron Free (WAD) Cyanide	TECH Instrumentation CALC BAL P&T/MS SUBWAY EXTENSION Instrumentation ICP TECH	3299379 Batch 3297327 3300191 3298850 Batch 3300621 3299379	N/A Extracted N/A N/A 2013/07/31 Extracted 2013/08/01 N/A	2013/08/01 Analyzed 2013/08/02 2013/08/01 2013/08/01 Analyzed 2013/08/02 2013/08/01	Analyst Louise Harding Collected 2013/07/25 Shipped Received 2013/07/26 Analyst Automated Statchk Min Yang Rebecca Schultz Collected 2013/07/25 Shipped Received 2013/07/26 Analyst Azita Fazaeli Louise Harding
Test Description Free (WAD) Cyanide Maxxam ID SK6014 Sample ID D5 Matrix Soil Test Description 1,3-Dichloropropene Sum Moisture Volatile Organic Compounds in Soil Volatile Organic Compounds in Soil Sk6015 Sample ID BH5(2'.5-4'.5) YONGE S Matrix Soil Test Description Hot Water Extractable Boron Free (WAD) Cyanide Conductivity	TECH Instrumentation CALC BAL P&T/MS SUBWAY EXTENSION Instrumentation ICP TECH COND	3299379 Batch 3297327 3300191 3298850 Batch 3300621 3299379 3300619	N/A Extracted N/A N/A 2013/07/31 Extracted 2013/08/01 N/A N/A	2013/08/01 Analyzed 2013/08/02 2013/08/01 2013/08/01 2013/08/02 2013/08/01 2013/08/01	Analyst Louise Harding Collected 2013/07/25 Shipped Received 2013/07/26 Analyst Automated Statchk Min Yang Rebecca Schultz Collected 2013/07/25 Shipped Received 2013/07/25 Shipped Received 2013/07/26 Analyst Azita Fazaeli Louise Harding Lemeneh Addis
Test Description Free (WAD) Cyanide Maxxam ID SK6014 Sample ID D5 Matrix Soil Test Description 1,3-Dichloropropene Sum Moisture Volatile Organic Compounds in Soil Maxxam ID SK6015 Sample ID BH5(2'.5-4'.5) YONGE S Matrix Soil Test Description Hot Water Extractable Boron Free (WAD) Cyanide Conductivity Hexavalent Chromium in Soil by IC	TECH Instrumentation CALC BAL P&T/MS SUBWAY EXTENSION INSTRUMENTATION ICP TECH COND IC/SPEC	3299379 Batch 3297327 3300191 3298850 3298850 Batch 3299879 3300621 3299379 3300619 3299513	N/A Extracted N/A N/A 2013/07/31 Extracted 2013/08/01 N/A N/A 2013/07/31	2013/08/01 Analyzed 2013/08/02 2013/08/01 2013/08/01 2013/08/02 2013/08/01 2013/08/01 2013/08/01 2013/07/31	Analyst Louise Harding Collected 2013/07/25 Shipped Received 2013/07/26 Analyst Automated Statchk Min Yang Rebecca Schultz Collected 2013/07/25 Shipped Received 2013/07/26 Analyst Azita Fazaeli Louise Harding Lemeneh Addis Yogesh Patel
Test Description Free (WAD) Cyanide Maxxam ID SK6014 Sample ID D5 Matrix Soil Test Description 1,3-Dichloropropene Sum Moisture Volatile Organic Compounds in Soil Volatile Organic Compounds in Soil Sample ID BH5(2'.5-4'.5) YONGE S Matrix Matrix Soil Test Description Hot Water Extractable Boron Free (WAD) Cyanide Conductivity Hexavalent Chromium in Soil by IC Acid Extr. Metals (aqua regia) by ICPMS	TECH Instrumentation CALC BAL P&T/MS SUBWAY EXTENSION Instrumentation ICP TECH COND IC/SPEC ICP/MS	3299379 Batch 3297327 3300191 3298850 Batch 3300621 3299379 3300619 3299513 3300582	N/A Extracted N/A N/A 2013/07/31 Extracted 2013/08/01 N/A N/A 2013/07/31 2013/08/01	2013/08/01 Analyzed 2013/08/02 2013/08/01 2013/08/01 2013/08/01 2013/08/01 2013/08/01 2013/07/31 2013/08/01	Analyst Louise Harding Collected 2013/07/25 Shipped Received 2013/07/26 Analyst Automated Statchk Min Yang Rebecca Schultz Collected 2013/07/25 Shipped Received 2013/07/26 Analyst Azita Fazaeli Louise Harding Lemeneh Addis Yogesh Patel Viviana Canzonieri
Test Description Free (WAD) Cyanide Maxxam ID SK6014 Sample ID D5 Matrix Soil Test Description 1,3-Dichloropropene Sum Moisture Volatile Organic Compounds in Soil Waxxam ID SK6015 Sample ID BH5(2'.5-4'.5) YONGE S Matrix Soil Test Description Hot Water Extractable Boron Free (WAD) Cyanide Conductivity Hexavalent Chromium in Soil by IC Acid Extr. Metals (aqua regia) by ICPMS Moisture	TECH Instrumentation CALC BAL P&T/MS SUBWAY EXTENSION INSTRUMENTATION ICP TECH COND IC/SPEC	3299379 Batch 3297327 3300191 3298850 3298850 Batch 3299379 3300621 3299379 3300619 3299513 3300582 3299336	N/A Extracted N/A N/A 2013/07/31 Extracted 2013/08/01 N/A N/A 2013/07/31 2013/07/31 2013/07/31 2013/08/01 N/A	2013/08/01 Analyzed 2013/08/02 2013/08/01 2013/08/01 2013/08/01 2013/08/01 2013/08/01 2013/07/31 2013/07/31	Analyst Louise Harding Collected 2013/07/25 Shipped Received 2013/07/26 Analyst Automated Statchk Min Yang Rebecca Schultz Collected 2013/07/25 Shipped Received 2013/07/25 Shipped Received 2013/07/26 Azita Fazaeli Louise Harding Lemeneh Addis Yogesh Patel Viviana Canzonieri Min Yang
Test Description Free (WAD) Cyanide Maxxam ID SK6014 Sample ID D5 Matrix Soil Test Description 1,3-Dichloropropene Sum Moisture Volatile Organic Compounds in Soil Volatile Organic Compounds in Soil Maxxam ID SK6015 Sample ID BH5(2'.5-4'.5) YONGE S Matrix Matrix Soil Test Description Hot Water Extractable Boron Free (WAD) Cyanide Conductivity Hexavalent Chromium in Soil by IC Acid Extr. Metals (aqua regia) by ICPMS	TECH Instrumentation CALC BAL P&T/MS SUBWAY EXTENSION Instrumentation ICP TECH COND IC/SPEC ICP/MS	3299379 Batch 3297327 3300191 3298850 Batch 3300621 3299379 3300619 3299513 3300582	N/A Extracted N/A N/A 2013/07/31 Extracted 2013/08/01 N/A N/A 2013/07/31 2013/08/01	2013/08/01 Analyzed 2013/08/02 2013/08/01 2013/08/01 2013/08/01 2013/08/01 2013/08/01 2013/07/31 2013/08/01	Analyst Louise Harding Collected 2013/07/25 Shipped Received 2013/07/26 Analyst Automated Statchk Min Yang Rebecca Schultz Collected 2013/07/25 Shipped Received 2013/07/26 Analyst Azita Fazaeli Louise Harding Lemeneh Addis Yogesh Patel Viviana Canzonieri

Ecoplans Limited Client Project #: YONGE SUBWAY EXTENSION

Maxxam ID SK6016 Sample ID BH5(5'-7') YONGE SUBW Matrix Soil	AY EXTENSION				Collected 2013/07/25 Shipped 2013/07/26
Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Methylnaphthalene Sum	CALC	3297326	N/A	2013/08/01	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	3298693	2013/07/30	2013/07/31	Mamdouh Salib
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	3298698	2013/07/30	2013/08/01	Zhiyue (Frank) Zhu
Moisture	BAL	3299390	N/A	2013/07/31	Min Yang
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	3298946	2013/07/31	2013/08/01	Darryl Tiller
Maxxam ID SK6017 Sample ID BH5(21'3"-22') YONGE SI Matrix Soil	UBWAY EXTENSION	I			Collected 2013/07/25 Shipped 2013/07/26
Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	3297327	N/A	2013/08/02	Automated Statchk
Moisture	BAL	3299442	N/A	2013/07/31	Min Yang
Volatile Organic Compounds in Soil	P&T/MS	3298850	2013/07/31	2013/08/01	Rebecca Schultz
Maxxam ID SK6018 Sample ID BH5(27'.5-29'.5) YONGE Matrix Soil	SUBWAY EXTENSIC	DN			Collected 2013/07/25 Shipped 2013/07/26
Sample ID BH5(27'.5-29'.5) YONGE	SUBWAY EXTENSIC	DN Batch	Extracted	Analyzed	Shipped
Sample ID BH5(27'.5-29'.5) YONGE Matrix Soil			Extracted 2013/08/01	Analyzed 2013/08/02	Shipped Received 2013/07/26
Sample ID BH5(27'.5-29'.5) YONGE Matrix Soil Test Description	Instrumentation	Batch			Shipped Received 2013/07/26 Analyst
Sample ID BH5(27'.5-29'.5) YONGE Matrix Soil Test Description Hot Water Extractable Boron	Instrumentation ICP TECH COND	Batch 3300621	2013/08/01	2013/08/02	Shipped Received 2013/07/26 Analyst Azita Fazaeli
Sample ID BH5(27'.5-29'.5) YONGE Matrix Soil Test Description Hot Water Extractable Boron Free (WAD) Cyanide	Instrumentation ICP TECH	Batch 3300621 3299379	2013/08/01 N/A	2013/08/02 2013/08/01	Shipped Received 2013/07/26 Analyst Azita Fazaeli Louise Harding
Sample ID BH5(27'.5-29'.5) YONGE Matrix Soil Test Description Hot Water Extractable Boron Free (WAD) Cyanide Conductivity	Instrumentation ICP TECH COND	Batch 3300621 3299379 3300619	2013/08/01 N/A N/A	2013/08/02 2013/08/01 2013/08/01	Shipped Received 2013/07/26 Analyst Azita Fazaeli Louise Harding Lemeneh Addis
Sample ID BH5(27'.5-29'.5) YONGE Matrix Soil Test Description Hot Water Extractable Boron Free (WAD) Cyanide Conductivity Hexavalent Chromium in Soil by IC Acid Extr. Metals (aqua regia) by ICPMS Moisture	Instrumentation ICP TECH COND IC/SPEC	Batch 3300621 3299379 3300619 3299513	2013/08/01 N/A N/A 2013/07/31	2013/08/02 2013/08/01 2013/08/01 2013/07/31	Shipped Received 2013/07/26 Analyst Azita Fazaeli Louise Harding Lemeneh Addis Yogesh Patel Viviana Canzonieri Min Yang
Sample ID BH5(27'.5-29'.5) YONGE Matrix Soil Test Description Hot Water Extractable Boron Free (WAD) Cyanide Conductivity Hexavalent Chromium in Soil by IC Acid Extr. Metals (aqua regia) by ICPMS Moisture pH CaCl2 EXTRACT	Instrumentation ICP TECH COND IC/SPEC ICP/MS	Batch 3300621 3299379 3300619 3299513 3300582	2013/08/01 N/A N/A 2013/07/31 2013/08/01	2013/08/02 2013/08/01 2013/08/01 2013/07/31 2013/08/01	Shipped Received 2013/07/26 Analyst Azita Fazaeli Louise Harding Lemeneh Addis Yogesh Patel Viviana Canzonieri
Sample ID BH5(27'.5-29'.5) YONGE Matrix Soil Test Description Hot Water Extractable Boron Free (WAD) Cyanide Conductivity Hexavalent Chromium in Soil by IC Acid Extr. Metals (aqua regia) by ICPMS Moisture	Instrumentation ICP TECH COND IC/SPEC ICP/MS	Batch 3300621 3299379 3300619 3299513 3300582 3299336	2013/08/01 N/A 2013/07/31 2013/08/01 N/A	2013/08/02 2013/08/01 2013/08/01 2013/07/31 2013/08/01 2013/07/31	Shipped Received 2013/07/26 Analyst Azita Fazaeli Louise Harding Lemeneh Addis Yogesh Patel Viviana Canzonieri Min Yang

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Hot Water Extractable Boron	ICP	3300621	2013/08/01	2013/08/02	Azita Fazaeli
Free (WAD) Cyanide	TECH	3299379	N/A	2013/08/01	Louise Harding
Conductivity	COND	3300619	N/A	2013/08/01	Lemeneh Addis
Hexavalent Chromium in Soil by IC	IC/SPEC	3299513	2013/07/31	2013/07/31	Yogesh Patel
Acid Extr. Metals (aqua regia) by ICPMS	ICP/MS	3300582	2013/08/01	2013/08/01	Viviana Canzonieri
Moisture	BAL	3299336	N/A	2013/07/31	Min Yang
pH CaCl2 EXTRACT		3300511	2013/08/01	2013/08/01	Surinder Rai
Sodium Adsorption Ratio (SAR)	CALC/MET	3297687	2013/08/02	2013/08/02	Automated Statchk

Ecoplans Limited Client Project #: YONGE SUBWAY EXTENSION

Test Summary

Maxxam ID SK6020 Sample ID D2					Collected 2013/07/25 Shipped
Matrix Soil					Received 2013/07/26
Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Hot Water Extractable Boron	ICP	3300621	2013/08/01	2013/08/02	Azita Fazaeli
Free (WAD) Cyanide	TECH	3299379	N/A	2013/08/01	Louise Harding
Conductivity	COND	3300619	N/A	2013/08/01	Lemeneh Addis
Hexavalent Chromium in Soil by IC	IC/SPEC	3299513	2013/07/31	2013/07/31	Yogesh Patel
Acid Extr. Metals (aqua regia) by ICPMS	ICP/MS	3300582	2013/08/01	2013/08/01	Viviana Canzonieri
Moisture	BAL	3299336	N/A	2013/07/31	Min Yang
pH CaCl2 EXTRACT		3300312	2013/08/01	2013/08/01	Surinder Rai
Sodium Adsorption Ratio (SAR)	CALC/MET	3297687	2013/08/02	2013/08/02	Automated Statchk

Maxxam ID SK6021

Sample ID MW4(0-2') YONGE SUBWAY EXTENSION Matrix Soil

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	3297327	N/A	2013/08/02	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	3299931	2013/07/31	2013/08/01	Yang Yu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	3298698	2013/07/30	2013/08/01	Zhiyue (Frank) Zhu
F4G (CCME Hydrocarbons Gravimetric)	BAL	3301361	2013/08/01	2013/08/01	Raheela Usmani
Moisture	BAL	3299336	N/A	2013/07/31	Min Yang
Volatile Organic Compounds in Soil	P&T/MS	3298850	2013/07/31	2013/08/01	Rebecca Schultz

Maxxam ID SK6022

Sample ID MW4(2'.5-4'.5) YONGE SUBWAY EXTENSION . Matrix Soil

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Hot Water Extractable Boron	ICP	3300621	2013/08/01	2013/08/02	Azita Fazaeli
Free (WAD) Cyanide	TECH	3299379	N/A	2013/08/01	Louise Harding
Conductivity	COND	3300619	N/A	2013/08/01	Lemeneh Addis
Hexavalent Chromium in Soil by IC	IC/SPEC	3299513	2013/07/31	2013/07/31	Yogesh Patel
Acid Extr. Metals (aqua regia) by ICPMS	ICP/MS	3300582	2013/08/01	2013/08/01	Viviana Canzonieri
Moisture	BAL	3299336	N/A	2013/07/31	Min Yang
pH CaCl2 EXTRACT		3300312	2013/08/01	2013/08/01	Surinder Rai
Sieve, 75um	PSIV	3300131	N/A	2013/07/31	Min Yang
Sodium Adsorption Ratio (SAR)	CALC/MET	3297687	2013/08/02	2013/08/02	Automated Statchk

Maxxam ID SK6023

Sample ID MW4(5'-7') YONGE SUBWAY EXTENSION Matrix Soil

Tes Met Moi PAI

est Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
lethylnaphthalene Sum	CALC	3297326	N/A	2013/08/01	Automated Statchk
loisture	BAL	3299390	N/A	2013/07/31	Min Yang
AH Compounds in Soil by GC/MS (SIM)	GC/MS	3298946	2013/07/31	2013/08/01	Darryl Tiller

Collected 2013/07/25 Shipped Received 2013/07/26

Collected 2013/07/25 Shipped Received 2013/07/26

Collected 2013/07/25

Received 2013/07/26

Shipped

Ecoplans Limited Client Project #: YONGE SUBWAY EXTENSION

Test Summary

Maxxam ID SK6024 Sample ID MW4(12'.5-13'.3") YONG Matrix Soil	GE SUBWAY EXTENS	ION			Collected 2013/07/25 Shipped 2013/07/26
Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Methylnaphthalene Sum	CALC	3297326	N/A	2013/08/01	Automated Statchk
Moisture	BAL	3299390	N/A	2013/07/31	Min Yang
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	3298946	2013/07/31	2013/08/01	Darryl Tiller
Maxxam ID SK6025 Sample ID MW4(27'.5-28.7") YONG Matrix Soil	E SUBWAY EXTENS	ION			Collected 2013/07/25 Shipped 2013/07/26
Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Hot Water Extractable Boron	ICP	3300621	2013/08/01	2013/08/02	Azita Fazaeli
Free (WAD) Cyanide	TECH	3299379	N/A	2013/08/01	Louise Harding
Conductivity	COND	3300619	N/A	2013/08/01	Lemeneh Addis
Hexavalent Chromium in Soil by IC	IC/SPEC	3299513	2013/07/31	2013/07/31	Yogesh Patel
Acid Extr. Metals (aqua regia) by ICPMS	ICP/MS	3300582	2013/08/01	2013/08/01	Viviana Canzonieri
Moisture	BAL	3299336	N/A	2013/07/31	Min Yang
pH CaCl2 EXTRACT		3300511	2013/08/01	2013/08/01	Surinder Rai
		3297687	2013/08/02	2013/08/02	Automated Statchk
Sodium Adsorption Ratio (SAR) Maxxam ID SK6025 Dup Sample ID MW4(27'.5-28.7") YONG	CALC/MET		2010/00/02	2010/00/02	Collected 2013/07/25 Shipped
Maxxam ID SK6025 Dup			Extracted	Analyzed	
Maxxam ID SK6025 Dup Sample ID MW4(27'.5-28.7'') YONG Matrix Soil	E SUBWAY EXTENS	ION			Shipped Received 2013/07/26
Maxxam ID SK6025 Dup Sample ID MW4(27'.5-28.7") YONG Matrix Soil Test Description	E SUBWAY EXTENS	ION Batch	Extracted	Analyzed	Shipped Received 2013/07/26 Analyst
Maxxam ID SK6025 Dup Sample ID MW4(27'.5-28.7") YONG Matrix Soil Test Description Hexavalent Chromium in Soil by IC Maxxam ID SK6026 Sample ID D3 Matrix Soil Test Description	E SUBWAY EXTENS	ION Batch 3299513 Batch	Extracted 2013/07/31 Extracted	Analyzed 2013/07/31 Analyzed	Shipped Received 2013/07/26 Analyst Yogesh Patel Collected 2013/07/25 Shipped Received 2013/07/26 Analyst
Maxxam ID SK6025 Dup Sample ID MW4(27'.5-28.7") YONG Matrix Soil Test Description Hexavalent Chromium in Soil by IC Maxxam ID SK6026 Sample ID D3 Matrix Soil Test Description Methylnaphthalene Sum	E SUBWAY EXTENS	ION <u>Batch</u> 3299513 <u>Batch</u> 3297326	Extracted 2013/07/31 Extracted N/A	Analyzed 2013/07/31 Analyzed 2013/08/01	Shipped Received 2013/07/26 Analyst Yogesh Patel Collected 2013/07/25 Shipped Received 2013/07/26 Analyst Automated Statchk
Maxxam ID SK6025 Dup Sample ID MW4(27'.5-28.7") YONG Matrix Soil Test Description Hexavalent Chromium in Soil by IC Maxxam ID SK6026 Sample ID D3 Matrix Soil Test Description Methylnaphthalene Sum Moisture	E SUBWAY EXTENS	ION <u>Batch</u> 3299513 <u>Batch</u> 3297326 3299390	Extracted 2013/07/31 Extracted N/A N/A	Analyzed 2013/07/31 Analyzed 2013/08/01 2013/07/31	Shipped Received 2013/07/26 Analyst Yogesh Patel Collected 2013/07/25 Shipped Received 2013/07/26 Analyst Automated Statchk Min Yang
Maxxam ID SK6025 Dup Sample ID MW4(27'.5-28.7") YONG Matrix Soil Test Description Hexavalent Chromium in Soil by IC Maxxam ID SK6026 Sample ID D3 Matrix Soil Test Description Methylnaphthalene Sum	E SUBWAY EXTENS	ION <u>Batch</u> 3299513 <u>Batch</u> 3297326	Extracted 2013/07/31 Extracted N/A	Analyzed 2013/07/31 Analyzed 2013/08/01	Shipped Received 2013/07/26 Analyst Yogesh Patel Collected 2013/07/25 Shipped Received 2013/07/26 Analyst Automated Statchk
Maxxam ID SK6025 Dup Sample ID MW4(27'.5-28.7") YONG Matrix Soil Test Description Hexavalent Chromium in Soil by IC Maxxam ID SK6026 Sample ID D3 Matrix Soil Test Description Methylnaphthalene Sum Moisture	E SUBWAY EXTENS	ION <u>Batch</u> 3299513 <u>Batch</u> 3297326 3299390	Extracted 2013/07/31 Extracted N/A N/A	Analyzed 2013/07/31 Analyzed 2013/08/01 2013/07/31	Shipped Received 2013/07/26 Analyst Yogesh Patel Collected 2013/07/25 Shipped Received 2013/07/26 Analyst Automated Statchk Min Yang
Maxxam ID SK6025 Dup Sample ID MW4(27'.5-28.7") YONG Matrix Soil Test Description Hexavalent Chromium in Soil by IC Maxxam ID SK6026 Sample ID D3 Matrix Soil Test Description Methylnaphthalene Sum Moisture PAH Compounds in Soil by GC/MS (SIM) Maxxam ID SK6027 Sample ID D4 Matrix Soil	E SUBWAY EXTENS	ION Batch 3299513 Batch 3297326 3299390 3298946	Extracted 2013/07/31 Extracted N/A N/A 2013/07/31	Analyzed 2013/07/31 Analyzed 2013/08/01 2013/07/31 2013/08/01	Shipped Received 2013/07/26 Analyst Yogesh Patel Collected 2013/07/25 Shipped Received 2013/07/26 Analyst Automated Statchk Min Yang Darryl Tiller Collected 2013/07/25 Shipped Received 2013/07/26
Maxxam ID SK6025 Dup Sample ID MW4(27'.5-28.7") YONG Matrix Soil Test Description Hexavalent Chromium in Soil by IC Maxxam ID SK6026 Sample ID D3 Matrix Soil Test Description Methylnaphthalene Sum Moisture PAH Compounds in Soil by GC/MS (SIM) Maxxam ID SK6027 Sample ID D4 Matrix Soil Test Description	E SUBWAY EXTENS	ION Batch 3299513 Batch 3297326 3299390 3298946 Batch	Extracted 2013/07/31 Extracted N/A N/A 2013/07/31 Extracted	Analyzed 2013/07/31 Analyzed 2013/08/01 2013/08/01 2013/08/01 Analyzed	Shipped Received 2013/07/26 Analyst Yogesh Patel Collected 2013/07/25 Shipped Received 2013/07/26 Analyst Automated Statchk Min Yang Darryl Tiller Collected 2013/07/25 Shipped Received 2013/07/26 Analyst
Maxxam ID SK6025 Dup Sample ID MW4(27'.5-28.7") YONG Matrix Soil Test Description Hexavalent Chromium in Soil by IC Maxxam ID SK6026 Sample ID D3 Matrix Soil Test Description Methylnaphthalene Sum Moisture PAH Compounds in Soil by GC/MS (SIM) Maxxam ID SK6027 Sample ID D4 Matrix Soil Test Description Methylnaphthalene Sum	E SUBWAY EXTENS	ION Batch 3299513 Batch 3297326 3299390 3298946 Batch 3297326	Extracted 2013/07/31 Extracted N/A N/A 2013/07/31 Extracted N/A	Analyzed 2013/07/31 Analyzed 2013/08/01 2013/08/01 2013/08/01 Analyzed 2013/08/01	Shipped Received 2013/07/26 Analyst Yogesh Patel Collected 2013/07/25 Shipped Received 2013/07/26 Analyst Automated Statchk Min Yang Darryl Tiller Collected 2013/07/25 Shipped Received 2013/07/26 Analyst Automated Statchk
Maxxam ID SK6025 Dup Sample ID MW4(27'.5-28.7") YONG Matrix Soil Test Description Hexavalent Chromium in Soil by IC Maxxam ID SK6026 Sample ID D3 Matrix Soil Test Description Methylnaphthalene Sum Moisture PAH Compounds in Soil by GC/MS (SIM) Maxxam ID SK6027 Sample ID D4 Matrix Soil Test Description	E SUBWAY EXTENS	ION Batch 3299513 Batch 3297326 3299390 3298946 Batch	Extracted 2013/07/31 Extracted N/A N/A 2013/07/31 Extracted	Analyzed 2013/07/31 Analyzed 2013/08/01 2013/08/01 2013/08/01 Analyzed	Shipped Received 2013/07/26 Analyst Yogesh Patel Collected 2013/07/25 Shipped Received 2013/07/26 Analyst Automated Statchk Min Yang Darryl Tiller Collected 2013/07/25 Shipped Received 2013/07/26 Analyst

Ecoplans Limited Client Project #: YONGE SUBWAY EXTENSION

Maxxam ID SK6027 Dup Sample ID D4 Matrix Soil					Collected 2013/07/25 Shipped 2013/07/26
Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	3298946	2013/07/31	2013/07/31	Darryl Tiller
Maxxam ID SK6028 Sample ID MW5(2'.5-4'.5) YONGE S Matrix Soil			Evitrantial	Analyzad	Collected 2013/07/24 Shipped Received 2013/07/26
Test Description	Instrumentation	Batch 3300621	Extracted	Analyzed 2013/08/02	Analyst
Hot Water Extractable Boron Free (WAD) Cyanide	TECH	3299379	2013/08/01 N/A	2013/08/02	Azita Fazaeli
	COND				Louise Harding
Conductivity		3300619	N/A	2013/08/01	Lemeneh Addis
Hexavalent Chromium in Soil by IC		3299513 3300582	2013/07/31 2013/08/01	2013/07/31 2013/08/01	Yogesh Patel
Acid Extr. Metals (aqua regia) by ICPMS Moisture	ICP/MS BAL	3299336	N/A	2013/08/01	Viviana Canzonieri Min Yang
pH CaCl2 EXTRACT	DAL	3300511	2013/08/01	2013/08/01	Surinder Rai
Sodium Adsorption Ratio (SAR)	CALC/MET	3297687	2013/08/02	2013/08/02	Automated Statchk
Sample ID MW5(8'.5-9'.5) YONGE S					Shipped
Matrix Soil	Instrumentation		Extracted	Analyzed	Received 2013/07/26
Test Description	Instrumentation	Batch	Extracted	Analyzed 2013/08/01	Received 2013/07/26 Analyst
Test Description Methylnaphthalene Sum	CALC	Batch 3297326	Extracted N/A N/A	2013/08/01	Received 2013/07/26 Analyst Automated Statchk
Test Description Methylnaphthalene Sum 1,3-Dichloropropene Sum	CALC CALC	Batch 3297326 3297327	N/A N/A	2013/08/01 2013/08/02	Received 2013/07/26 Analyst Automated Statchk Automated Statchk
Test Description Methylnaphthalene Sum 1,3-Dichloropropene Sum Moisture	CALC	Batch 3297326	N/A	2013/08/01	Received 2013/07/26 Analyst Automated Statchk
Test Description Methylnaphthalene Sum 1,3-Dichloropropene Sum	CALC CALC BAL	Batch 3297326 3297327 3299390	N/A N/A N/A	2013/08/01 2013/08/02 2013/07/31	Received 2013/07/26 Analyst Automated Statchk Automated Statchk Min Yang
Test Description Methylnaphthalene Sum 1,3-Dichloropropene Sum Moisture PAH Compounds in Soil by GC/MS (SIM) Volatile Organic Compounds in Soil Maxxam ID SK6030 Sample ID MW5(10'-12') YONGE St Matrix Soil	CALC CALC BAL GC/MS P&T/MS JBWAY EXTENSION	Batch 3297326 3297327 3299390 3298946 3298850	N/A N/A 2013/07/31 2013/07/31	2013/08/01 2013/08/02 2013/07/31 2013/08/01 2013/08/01	Received 2013/07/26 Analyst Automated Automated Statchk Automated Statchk Min Yang Darryl Tiller Rebecca Schultz Collected 2013/07/24 Shipped Received Received 2013/07/26
Test Description Methylnaphthalene Sum 1,3-Dichloropropene Sum Moisture PAH Compounds in Soil by GC/MS (SIM) Volatile Organic Compounds in Soil Maxxam ID SK6030 Sample ID MW5(10'-12') YONGE SI Matrix Soil Test Description	CALC CALC BAL GC/MS P&T/MS JBWAY EXTENSION	Batch 3297326 3297327 3299390 3298946 3298850 3298850	N/A N/A 2013/07/31 2013/07/31 Extracted	2013/08/01 2013/08/02 2013/07/31 2013/08/01 2013/08/01	Received 2013/07/26 Analyst Automated Statchk Automated Statchk Min Yang Darryl Tiller Rebecca Schultz Collected 2013/07/24 Shipped Received 2013/07/26 Analyst
Test Description Methylnaphthalene Sum 1,3-Dichloropropene Sum Moisture PAH Compounds in Soil by GC/MS (SIM) Volatile Organic Compounds in Soil Maxxam ID SK6030 Sample ID MW5(10'-12') YONGE SI Matrix Soil Test Description Methylnaphthalene Sum	CALC CALC BAL GC/MS P&T/MS JBWAY EXTENSION Instrumentation CALC	Batch 3297326 3297327 3299390 3298946 3298850 Batch 3297326	N/A N/A 2013/07/31 2013/07/31 Extracted N/A	2013/08/01 2013/08/02 2013/07/31 2013/08/01 2013/08/01 Analyzed 2013/08/01	Received 2013/07/26 Analyst Automated Statchk Automated Statchk Min Yang Darryl Tiller Rebecca Schultz Collected 2013/07/24 Shipped Received 2013/07/26 Analyst Automated Statchk
Test Description Methylnaphthalene Sum 1,3-Dichloropropene Sum Moisture PAH Compounds in Soil by GC/MS (SIM) Volatile Organic Compounds in Soil Maxxam ID SK6030 Sample ID MW5(10'-12') YONGE SI Matrix Soil Test Description Methylnaphthalene Sum Moisture	CALC CALC BAL GC/MS P&T/MS JBWAY EXTENSION Instrumentation CALC BAL	Batch 3297326 3297327 3299390 3298946 3298850 Batch 3297326 3299390	N/A N/A 2013/07/31 2013/07/31 Extracted N/A N/A	2013/08/01 2013/08/02 2013/07/31 2013/08/01 2013/08/01 2013/08/01 2013/08/01 2013/07/31	Received 2013/07/26 Analyst Automated Statchk Automated Statchk Min Yang Darryl Tiller Rebecca Schultz Collected 2013/07/24 Shipped Received 2013/07/26 Analyst Automated Statchk
Test Description Methylnaphthalene Sum 1,3-Dichloropropene Sum Moisture PAH Compounds in Soil by GC/MS (SIM) Volatile Organic Compounds in Soil Maxxam ID SK6030 Sample ID MW5(10'-12') YONGE SI Matrix Soil Test Description Methylnaphthalene Sum	CALC CALC BAL GC/MS P&T/MS JBWAY EXTENSION Instrumentation CALC BAL GC/MS	Batch 3297326 3297327 3299390 3298946 3298850 Batch 3297326 3299390 3298946	N/A N/A 2013/07/31 2013/07/31 Extracted N/A	2013/08/01 2013/08/02 2013/07/31 2013/08/01 2013/08/01 Analyzed 2013/08/01	Received 2013/07/26 Analyst Automated Statchk Automated Statchk Min Yang Darryl Tiller Rebecca Schultz Collected 2013/07/24 Shipped Received 2013/07/26 Analyst Automated Statchk

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	3298693	2013/07/30	2013/07/31	Mamdouh Salib
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	3298698	2013/07/30	2013/08/01	Zhiyue (Frank) Zhu
Moisture	BAL	3299336	N/A	2013/07/31	Min Yang

Maxxam ID SK6031 Dup Sample ID MW5(12'.5-13') YONO Matrix Soil	GE SUBWAY EXTENSIO	Collected 2013/07/24 Shipped 2013/07/26			
Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in S	Soil HSGC/MSFD	3298693	2013/07/30	2013/07/31	Mamdouh Salib
Maxxam ID SK6032 Sample ID MW5(27'.5-29'.5) YON Matrix Soil	NGE SUBWAY EXTENSI	ON			Collected 2013/07/24 Shipped 2013/07/26
Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Hot Water Extractable Boron	ICP	3300621	2013/08/01	2013/08/02	Azita Fazaeli
Free (WAD) Cyanide	TECH	3299379	N/A	2013/08/01	Louise Harding
Conductivity	COND	3300619	N/A	2013/08/01	Lemeneh Addis
Hexavalent Chromium in Soil by IC	IC/SPEC	3299513	2013/07/31	2013/07/31	Yogesh Patel
Acid Extr. Metals (aqua regia) by ICPMS	ICP/MS	3300582	2013/08/01	2013/08/01	Viviana Canzonieri
Moisture	BAL	3299336	N/A	2013/07/31	Min Yang
pH CaCl2 EXTRACT		3300312	2013/08/01	2013/08/01	Surinder Rai

Success Through Science®

Package 1 16.7°C Each temperature is the average of up to three cooler temperatures taken at receipt	
GENERAL COMMENTS	
Sample SK6004-01: SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation represents a maximum ratio.	on. This value
Sample SK6015-01: SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation represents a maximum ratio.	on. This value
Sample SK6018-01: SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation represents a maximum ratio.	on. This value
Sample SK6019-01: SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation represents a maximum ratio.	on. This value
Sample SK6020-01: SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation represents a maximum ratio.	on. This value
Sample SK6025-01: SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation represents a maximum ratio.	on. This value
Sample SK6028-01: SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation represents a maximum ratio.	on. This value
Sample SK6032-01: SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculative represents a maximum ratio.	on. This value

Results relate only to the items tested.

Ecoplans Limited Attention: Natalia Codoban Client Project #: YONGE SUBWAY EXTENSION P.O. #: Site Location:

Quality Assurance Report

Maxxam Job Number: MB3C2252

QA/QC			Date			
Batch Num Init	QC Type	Parameter	Analyzed yyyy/mm/dd	Value Recovery	Units	QC Limit
3298693 MSB	Matrix Spike	T diameter	yyyy/mm/da	value Recovery	Onits	QC LIIIII
0200000 MICB	[SK6031-01]	1,4-Difluorobenzene	2013/07/31	99	%	60 - 14
		4-Bromofluorobenzene	2013/07/31	96	%	60 - 14
		D10-Ethylbenzene	2013/07/31	80	%	60 - 14
		D4-1,2-Dichloroethane	2013/07/31	88	%	60 - 14
		Benzene	2013/07/31	80	%	60 - 14
		Toluene	2013/07/31	90	%	60 - 14
		Ethylbenzene	2013/07/31	83	%	60 - 14
		o-Xylene	2013/07/31	87	%	60 - 14
		p+m-Xylene	2013/07/31	79	%	60 - 14
		F1 (C6-C10)	2013/07/31	79	%	60 - 14
	Spiked Blank	1,4-Difluorobenzene	2013/07/31	98	%	60 - 14
	Opined Diarik	4-Bromofluorobenzene	2013/07/31	97	%	60 - 14
		D10-Ethylbenzene	2013/07/31	78	%	60 - 14
		D4-1,2-Dichloroethane	2013/07/31	91	%	60 - 14
		Benzene	2013/07/31	84	%	60 - 13
		Toluene	2013/07/31	93	%	60 - 13
		Ethylbenzene	2013/07/31	93 82	%	60 - 13
		o-Xylene	2013/07/31	89	%	60 - 13
		p+m-Xylene F1 (C6-C10)	2013/07/31	83 80	% %	60 - 13 80 - 12
	Mathad Dlank		2013/07/31			
	Method Blank	1,4-Difluorobenzene	2013/07/31	97	%	60 - 14
		4-Bromofluorobenzene	2013/07/31	89	%	60 - 14
		D10-Ethylbenzene	2013/07/31	76	%	60 - 14
		D4-1,2-Dichloroethane	2013/07/31	89	%	60 - 14
		Benzene	2013/07/31	ND, RDL=0.020	ug/g	
		Toluene	2013/07/31	ND, RDL=0.020	ug/g	
		Ethylbenzene	2013/07/31	ND, RDL=0.020	ug/g	
		o-Xylene	2013/07/31	ND, RDL=0.020	ug/g	
		p+m-Xylene	2013/07/31	ND, RDL=0.040	ug/g	
		Total Xylenes	2013/07/31	ND, RDL=0.040	ug/g	
		F1 (C6-C10)	2013/07/31	ND, RDL=10	ug/g	
		F1 (C6-C10) - BTEX	2013/07/31	ND, RDL=10	ug/g	
	RPD [SK6031-01]	Benzene	2013/07/31	NC	%	Ę
		Toluene	2013/07/31	NC	%	5
		Ethylbenzene	2013/07/31	NC	%	Ę
		o-Xylene	2013/07/31	NC	%	Ę
		p+m-Xylene	2013/07/31	NC	%	5
		Total Xylenes	2013/07/31	NC	%	5
		F1 (C6-C10)	2013/07/31	NC	%	Ę
		F1 (C6-C10) - BTEX	2013/07/31	NC	%	5
3298698 ZZ	Matrix Spike	o-Terphenyl	2013/08/01	89	%	50 - 13
		F2 (C10-C16 Hydrocarbons)	2013/08/01	102	%	50 - 13
		F3 (C16-C34 Hydrocarbons)	2013/08/01	107	%	50 - 13
		F4 (C34-C50 Hydrocarbons)	2013/08/01	106	%	50 - 13
	Spiked Blank	o-Terphenyl	2013/08/01	87	%	50 - 13
		F2 (C10-C16 Hydrocarbons)	2013/08/01	93	%	80 - 12
		F3 (C16-C34 Hydrocarbons)	2013/08/01	99	%	80 - 12
		F4 (C34-C50 Hydrocarbons)	2013/08/01	98	%	80 - 12
	Method Blank	o-Terphenyl	2013/08/01	91	%	50 - 13
		F2 (C10-C16 Hydrocarbons)	2013/08/01	ND, RDL=10	ug/g	
		F3 (C16-C34 Hydrocarbons)	2013/08/01	ND, RDL=50	ug/g	
		F4 (C34-C50 Hydrocarbons)	2013/08/01	ND, RDL=50	ug/g	
	RPD	F2 (C10-C16 Hydrocarbons)	2013/08/01	NC	%	3

Ecoplans Limited Attention: Natalia Codoban Client Project #: YONGE SUBWAY EXTENSION P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: MB3C2252

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
3298698 ZZ	RPD	F4 (C34-C50 Hydrocarbons)	2013/08/01	NC	, , , , , , , , , , , , , , , , , , ,	%	30
3298850 RSC	Matrix Spike	4-Bromofluorobenzene	2013/08/01		97	%	60 - 140
		D10-o-Xylene	2013/08/01		115	%	60 - 130
		D4-1,2-Dichloroethane	2013/08/01		108	%	60 - 140
		D8-Toluene	2013/08/01		104	%	60 - 140
		Acetone (2-Propanone)	2013/08/01		109	%	60 - 140
		Benzene	2013/08/01		103	%	60 - 140
		Bromodichloromethane	2013/08/01		102	%	60 - 140
		Bromoform	2013/08/01		75	%	60 - 140
		Bromomethane	2013/08/01		102	%	60 - 140
		Carbon Tetrachloride	2013/08/01		102	%	60 - 140
		Chlorobenzene	2013/08/01		98	%	60 - 140
					90 97		
		Chloroform	2013/08/01			%	60 - 140
		Dibromochloromethane	2013/08/01		96	%	60 - 140
		1,2-Dichlorobenzene	2013/08/01		95	%	60 - 140
		1,3-Dichlorobenzene	2013/08/01		95	%	60 - 140
		1,4-Dichlorobenzene	2013/08/01		96	%	60 - 140
		Dichlorodifluoromethane (FREON 12)	2013/08/01		98	%	60 - 140
		1,1-Dichloroethane	2013/08/01		109	%	60 - 140
		1,2-Dichloroethane	2013/08/01		106	%	60 - 140
		1,1-Dichloroethylene	2013/08/01		116	%	60 - 140
		cis-1,2-Dichloroethylene	2013/08/01		100	%	60 - 140
		trans-1,2-Dichloroethylene	2013/08/01		100	%	60 - 140
		1,2-Dichloropropane	2013/08/01		105	%	60 - 140
		cis-1,3-Dichloropropene	2013/08/01		98	%	60 - 140
		trans-1,3-Dichloropropene	2013/08/01		101	%	60 - 140
		Ethylbenzene	2013/08/01		98	%	60 - 140
		Ethylene Dibromide	2013/08/01		102	%	60 - 140
		Hexane	2013/08/01		122	%	60 - 140
		Methylene Chloride(Dichloromethane)	2013/08/01		98	%	60 - 140
		Methyl Isobutyl Ketone	2013/08/01		115	%	60 - 140
		Methyl Ethyl Ketone (2-Butanone)	2013/08/01		104	%	60 - 140
		Methyl t-butyl ether (MTBE)	2013/08/01		108	%	60 - 140
		Styrene	2013/08/01		102	%	60 - 140
		1,1,1,2-Tetrachloroethane	2013/08/01		100	%	60 - 140
		1,1,2,2-Tetrachloroethane	2013/08/01		104	%	60 - 140
		Tetrachloroethylene	2013/08/01		93	%	60 - 140
		Toluene	2013/08/01		98	%	60 - 140
		1,1,1-Trichloroethane	2013/08/01		104	%	60 - 140
		1,1,2-Trichloroethane	2013/08/01		120	%	60 - 140
		Trichloroethylene	2013/08/01		96	%	60 - 140
		Vinyl Chloride	2013/08/01		116	%	60 - 140
		p+m-Xylene	2013/08/01		98	%	60 - 140
		o-Xylene	2013/08/01		98	%	60 - 140
		Trichlorofluoromethane (FREON 11)	2013/08/01		106	%	60 - 140
	Chillend Diank	· · · · · · · · · · · · · · · · · · ·	2013/08/01				
	Spiked Blank	4-Bromofluorobenzene			95	%	60 - 140
		D10-o-Xylene	2013/08/01		99 110	%	60 - 130
		D4-1,2-Dichloroethane	2013/08/01		110	%	60 - 140
		D8-Toluene	2013/08/01		100	%	60 - 140
		Acetone (2-Propanone)	2013/08/01		100	%	60 - 140
		Benzene	2013/08/01		100	%	60 - 130
		Bromodichloromethane	2013/08/01		100	%	60 - 130
		Bromoform	2013/08/01		73	%	60 - 130
		Bromomethane	2013/08/01		107	%	60 - 140
		Carbon Tetrachloride	2013/08/01		103	%	60 - 130

Ecoplans Limited Attention: Natalia Codoban Client Project #: YONGE SUBWAY EXTENSION P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: MB3C2252

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
3298850 RSC	Spiked Blank	Chlorobenzene	2013/08/01	95	%	60 - 130
		Chloroform	2013/08/01	97	%	60 - 130
		Dibromochloromethane	2013/08/01	96	%	60 - 130
		1,2-Dichlorobenzene	2013/08/01	92	%	60 - 130
		1,3-Dichlorobenzene	2013/08/01	92	%	60 - 130
		1,4-Dichlorobenzene	2013/08/01	92	%	60 - 130
		Dichlorodifluoromethane (FREON 12)	2013/08/01	96	%	60 - 140
		1,1-Dichloroethane	2013/08/01	106	%	60 - 130
		1,2-Dichloroethane	2013/08/01	104	%	60 - 130
		1,1-Dichloroethylene	2013/08/01	110	%	60 - 130
		cis-1,2-Dichloroethylene	2013/08/01	98	%	60 - 130
		trans-1,2-Dichloroethylene	2013/08/01	98	%	60 - 130
		1,2-Dichloropropane	2013/08/01	100	%	60 - 130
		cis-1,3-Dichloropropene	2013/08/01	94	%	60 - 130
		trans-1,3-Dichloropropene	2013/08/01	100	%	60 - 130
		Ethylbenzene	2013/08/01	96	%	60 - 130
		Ethylene Dibromide	2013/08/01	98	%	60 - 130
		Hexane	2013/08/01	112	%	60 - 130
		Methylene Chloride(Dichloromethane)	2013/08/01	95	%	60 - 130
		Methyl Isobutyl Ketone	2013/08/01	104	%	60 - 130
		Methyl Ethyl Ketone (2-Butanone)	2013/08/01	98	%	60 - 140
		Methyl t-butyl ether (MTBE)	2013/08/01	102	%	60 - 130
		Styrene	2013/08/01	95	%	60 - 130
		1,1,1,2-Tetrachloroethane	2013/08/01	99	%	60 - 130
		1,1,2,2-Tetrachloroethane	2013/08/01	100	%	60 - 130
		Tetrachloroethylene	2013/08/01	91	%	60 - 130
		Toluene	2013/08/01	95	%	60 - 130
		1,1,1-Trichloroethane	2013/08/01	103	%	60 - 130
		1,1,2-Trichloroethane	2013/08/01	94	%	60 - 130
		Trichloroethylene	2013/08/01	93	%	60 - 130
		Vinyl Chloride	2013/08/01	112	%	60 - 130
		p+m-Xylene	2013/08/01	94	%	60 - 130
		o-Xylene	2013/08/01	94	%	60 - 130
		Trichlorofluoromethane (FREON 11)	2013/08/01	102	%	60 - 130
	Method Blank	4-Bromofluorobenzene	2013/08/01	93	%	60 - 140
		D10-o-Xylene	2013/08/01	97	%	60 - 130
		D4-1,2-Dichloroethane	2013/08/01	106	%	60 - 140
		D8-Toluene	2013/08/01	100	%	60 - 140
		Acetone (2-Propanone)	2013/08/01	ND, RDL=0.50	ug/g	
		Benzene	2013/08/01	ND, RDL=0.020	ug/g	
		Bromodichloromethane	2013/08/01	ND, RDL=0.050	ug/g	
		Bromoform	2013/08/01	ND, RDL=0.050	ug/g	
		Bromomethane	2013/08/01	ND, RDL=0.050	ug/g	
		Carbon Tetrachloride	2013/08/01	ND, RDL=0.050	ug/g	
		Chlorobenzene	2013/08/01	ND, RDL=0.050	ug/g	
		Chloroform	2013/08/01	ND, RDL=0.050	ug/g	
		Dibromochloromethane	2013/08/01	ND, RDL=0.050	ug/g	
		1,2-Dichlorobenzene	2013/08/01	ND, RDL=0.050	ug/g	
		1,3-Dichlorobenzene	2013/08/01	ND, RDL=0.050	ug/g	
		1,4-Dichlorobenzene	2013/08/01	ND, RDL=0.050	ug/g	
		Dichlorodifluoromethane (FREON 12)	2013/08/01	ND, RDL=0.050	ug/g	
		1,1-Dichloroethane	2013/08/01	ND, RDL=0.050	ug/g	
		1,2-Dichloroethane	2013/08/01	ND, RDL=0.050	ug/g	
		1,1-Dichloroethylene	2013/08/01	ND, RDL=0.050	ug/g	
		cis-1,2-Dichloroethylene	2013/08/01	ND, RDL=0.050	ug/g	
		· · · · ·			00	

Quality Assurance Report (Continued)

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
3298850 RSC	Method Blank	trans-1,2-Dichloroethylene	2013/08/01	ND, RDL=0.050	ug/g	
		1,2-Dichloropropane	2013/08/01	ND, RDL=0.050	ug/g	
		cis-1,3-Dichloropropene	2013/08/01	ND, RDL=0.030	ug/g	
		trans-1,3-Dichloropropene	2013/08/01	ND, RDL=0.040	ug/g	
		Ethylbenzene	2013/08/01	ND, RDL=0.020	ug/g	
		Ethylene Dibromide	2013/08/01	ND, RDL=0.050	ug/g	
		Hexane	2013/08/01	ND, RDL=0.050	ug/g	
		Methylene Chloride(Dichloromethane)	2013/08/01	ND, RDL=0.050	ug/g ug/g	
		Methyl Isobutyl Ketone	2013/08/01	ND, RDL=0.000	ug/g	
		Methyl Ethyl Ketone (2-Butanone)	2013/08/01	ND, RDL=0.50	ug/g	
		Methyl t-butyl ether (MTBE)	2013/08/01	ND, RDL=0.050	ug/g	
		Styrene	2013/08/01	ND, RDL=0.050	ug/g ug/g	
		1,1,1,2-Tetrachloroethane	2013/08/01	ND, RDL=0.050	ug/g ug/g	
		1,1,2,2-Tetrachloroethane	2013/08/01	ND, RDL=0.050	ug/g ug/g	
		Tetrachloroethylene	2013/08/01	ND, RDL=0.050		
		Toluene			ug/g	
		1.1.1-Trichloroethane	2013/08/01 2013/08/01	ND, RDL=0.020	ug/g	
			2013/08/01	ND, RDL=0.050 ND, RDL=0.050	ug/g	
		1,1,2-Trichloroethane		,	ug/g	
		Trichloroethylene	2013/08/01	ND, RDL=0.050 ND, RDL=0.020	ug/g	
		Vinyl Chloride	2013/08/01	,	ug/g	
		p+m-Xylene	2013/08/01	ND, RDL=0.020	ug/g	
		o-Xylene	2013/08/01	ND, RDL=0.020	ug/g	
		Xylene (Total)	2013/08/01	ND, RDL=0.020	ug/g	
		Trichlorofluoromethane (FREON 11)	2013/08/01	ND, RDL=0.050	ug/g	-
	RPD	Acetone (2-Propanone)	2013/08/01	NC	%	50
		Benzene	2013/08/01	3.2	%	50
		Bromodichloromethane	2013/08/01	NC	%	50
		Bromoform	2013/08/01	NC	%	50
		Bromomethane	2013/08/01	NC	%	50
		Carbon Tetrachloride	2013/08/01	NC	%	50
		Chlorobenzene	2013/08/01	NC	%	50
		Chloroform	2013/08/01	NC	%	50
		Dibromochloromethane	2013/08/01	NC	%	50
		1,2-Dichlorobenzene	2013/08/01	NC	%	50
		1,3-Dichlorobenzene	2013/08/01	NC	%	50
		1,4-Dichlorobenzene	2013/08/01	NC	%	50
		Dichlorodifluoromethane (FREON 12)	2013/08/01	NC	%	50
		1,1-Dichloroethane	2013/08/01	NC	%	50
		1,2-Dichloroethane	2013/08/01	NC	%	50
		1,1-Dichloroethylene	2013/08/01	NC	%	50
		cis-1,2-Dichloroethylene	2013/08/01	NC	%	50
		trans-1,2-Dichloroethylene	2013/08/01	NC	%	50
		1,2-Dichloropropane	2013/08/01	NC	%	50
		cis-1,3-Dichloropropene	2013/08/01	NC	%	50
		trans-1,3-Dichloropropene	2013/08/01	NC (1)	%	50
		Ethylbenzene	2013/08/01	6.4	%	5
		Ethylene Dibromide	2013/08/01	NC	%	50
		Hexane	2013/08/01	3.4	%	5
		Methylene Chloride(Dichloromethane)	2013/08/01	NC	%	50
		Methyl Isobutyl Ketone	2013/08/01	NC	%	50
		Methyl Ethyl Ketone (2-Butanone)	2013/08/01	NC	%	50
		Methyl t-butyl ether (MTBE)	2013/08/01	NC	%	50
		Styrene	2013/08/01	NC	%	50
		1,1,1,2-Tetrachloroethane	2013/08/01	NC	%	50
		1,1,2,2-Tetrachloroethane	2013/08/01	NC	%	50
			2010/00/01		70	50

Quality Assurance Report (Continued)

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limi
3298850 RSC	RPD	Tetrachloroethylene	2013/08/01	NC		%	Ę
		Toluene	2013/08/01	2.8		%	Ę
		1,1,1-Trichloroethane	2013/08/01	NC		%	Ę
		1,1,2-Trichloroethane	2013/08/01	NC		%	Ę
		Trichloroethylene	2013/08/01	NC		%	Ę
		Vinyl Chloride	2013/08/01	NC		%	Ę
		p+m-Xylene	2013/08/01	4.0		%	Ę
		o-Xylene	2013/08/01	6.4		%	Į.
		Xylene (Total)	2013/08/01	4.5		%	Ę
		Trichlorofluoromethane (FREON 11)	2013/08/01	NC		%	Ę
298946 DTI	Matrix Spike	meniorondoronnemane (i record i r)	2013/00/01	NC		70	,
230340 D11	[SK6027-01]	D10-Anthracene	2013/07/31		80	%	50 - 13
	[3K0027-01]						
		D14-Terphenyl (FS)	2013/07/31		89	%	50 - 13
		D8-Acenaphthylene	2013/07/31		73	%	50 - 13
		Acenaphthene	2013/07/31		79	%	50 - 13
		Acenaphthylene	2013/07/31		77	%	50 - 1
		Anthracene	2013/07/31		82	%	50 - 1
		Benzo(a)anthracene	2013/07/31		89	%	50 - 1
		Benzo(a)pyrene	2013/07/31		70	%	50 - 1
		Benzo(b/j)fluoranthene	2013/07/31		75	%	50 - 1
		Benzo(g,h,i)perylene	2013/07/31		74	%	50 - 1
		Benzo(k)fluoranthene	2013/07/31		76	%	50 - 1
		Chrysene	2013/07/31		82	%	50 - 1
		Dibenz(a,h)anthracene	2013/07/31		79	%	50 - 1
		Fluoranthene	2013/07/31		84	%	50 - 1
		Fluorene	2013/07/31		78	%	50 - 1
		Indeno(1,2,3-cd)pyrene	2013/07/31		79	%	50 - 1
		1-Methylnaphthalene	2013/07/31		77	%	50 - 1
		2-Methylnaphthalene	2013/07/31		75	%	50 - 1
							50 - 1
		Naphthalene	2013/07/31		75	%	
		Phenanthrene	2013/07/31		80	%	50 - 1
		Pyrene	2013/07/31		85	%	50 - 1
	Spiked Blank	D10-Anthracene	2013/07/31		85	%	50 - 1
		D14-Terphenyl (FS)	2013/07/31		90	%	50 - 1
		D8-Acenaphthylene	2013/07/31		78	%	50 - 1
		Acenaphthene	2013/07/31		84	%	50 - 1
		Acenaphthylene	2013/07/31		82	%	50 - 1
		Anthracene	2013/07/31		86	%	50 - 1
		Benzo(a)anthracene	2013/07/31		91	%	50 - 1
		Benzo(a)pyrene	2013/07/31		80	%	50 - 1
		Benzo(b/j)fluoranthene	2013/07/31		87	%	50 - 1
		Benzo(g,h,i)perylene	2013/07/31		86	%	50 - 1
		Benzo(k)fluoranthene	2013/07/31		89	%	50 - 1
		Chrysene	2013/07/31		86	%	50 - 1
		Dibenz(a,h)anthracene	2013/07/31		89	%	50 - 1
		Fluoranthene	2013/07/31		87	%	50 - 1 50 - 1
			2013/07/31		83	%	50 - 1
		Indeno(1,2,3-cd)pyrene	2013/07/31		90	%	50 - 1
		1-Methylnaphthalene	2013/07/31		84	%	50 - 1
		2-Methylnaphthalene	2013/07/31		81	%	50 - 1
		Naphthalene	2013/07/31		83	%	50 - 1
		Phenanthrene	2013/07/31		84	%	50 - 1
		Pyrene	2013/07/31		87	%	50 - 1
	Method Blank	D10-Anthracene	2013/07/31		87	%	50 - 1
		D14-Terphenyl (FS)	2013/07/31		91	%	50 - 1

Quality Assurance Report (Continued)

QA/QC			Date				
Batch		_	Analyzed		_		
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limit
3298946 DTI	Method Blank	D8-Acenaphthylene	2013/07/31		75	%	50 - 13
		Acenaphthene	2013/07/31		DL=0.0050	ug/g	
		Acenaphthylene	2013/07/31		DL=0.0050	ug/g	
		Anthracene	2013/07/31		DL=0.0050	ug/g	
		Benzo(a)anthracene	2013/07/31		DL=0.0050	ug/g	
		Benzo(a)pyrene	2013/07/31		DL=0.0050	ug/g	
		Benzo(b/j)fluoranthene	2013/07/31		DL=0.0050	ug/g	
		Benzo(g,h,i)perylene	2013/07/31	,	DL=0.0050	ug/g	
		Benzo(k)fluoranthene	2013/07/31		DL=0.0050	ug/g	
		Chrysene	2013/07/31	,	DL=0.0050	ug/g	
		Dibenz(a,h)anthracene	2013/07/31		DL=0.0050	ug/g	
		Fluoranthene	2013/07/31	ND, RI	DL=0.0050	ug/g	
		Fluorene	2013/07/31	ND, RI	DL=0.0050	ug/g	
		Indeno(1,2,3-cd)pyrene	2013/07/31	ND, RI	DL=0.0050	ug/g	
		1-Methylnaphthalene	2013/07/31		DL=0.0050	ug/g	
		2-Methylnaphthalene	2013/07/31		DL=0.0050	ug/g	
		Naphthalene	2013/07/31	ND, RI	DL=0.0050	ug/g	
		Phenanthrene	2013/07/31		DL=0.0050	ug/g	
		Pyrene	2013/07/31	ND, RI	DL=0.0050	ug/g	
	RPD [SK6027-01]	Acenaphthene	2013/07/31	NC		%	2
		Acenaphthylene	2013/07/31	NC		%	4
		Anthracene	2013/07/31	NC		%	4
		Benzo(a)anthracene	2013/07/31	NC		%	4
		Benzo(a)pyrene	2013/07/31	NC		%	4
		Benzo(b/j)fluoranthene	2013/07/31	NC		%	4
		Benzo(g,h,i)perylene	2013/07/31	NC		%	4
		Benzo(k)fluoranthene	2013/07/31	NC		%	4
		Chrysene	2013/07/31	NC		%	2
		Dibenz(a,h)anthracene	2013/07/31	NC		%	4
		Fluoranthene	2013/07/31	NC		%	4
		Fluorene	2013/07/31	NC		%	4
		Indeno(1,2,3-cd)pyrene	2013/07/31	NC		%	4
		1-Methylnaphthalene	2013/07/31	NC		%	4
		2-Methylnaphthalene	2013/07/31	NC		%	4
		Naphthalene	2013/07/31	NC		%	4
		Phenanthrene	2013/07/31	NC		%	4
		Pyrene	2013/07/31	NC		%	4
3299336 JK1	RPD [SK6007-01]	Moisture	2013/07/31	1		%	2
3299379 LHA	Matrix Spike						
	[SK6013-01]	Free Cyanide	2013/08/01		103	%	75 - 12
	Spiked Blank	Free Cyanide	2013/08/01		102	%	80 - 12
	Method Blank	Free Cyanide	2013/08/01	ND. RI	DL=0.01	ug/g	
	RPD [SK6013-01]	Free Cyanide	2013/08/01	NC		%	3
3299390 JK1	RPD	Moisture	2013/07/31	1.6		%	2
3299442 JV1	RPD	Moisture	2013/07/31	1.7		%	2
3299513 YPA	Matrix Spike		2010/01/01			,0	-
	[SK6025-01]	Chromium (VI)	2013/07/31		0.33 (2	%	75 - 12
	QC Standard	Chromium (VI)	2013/07/31		102	%	75 - 12
	Spiked Blank	Chromium (VI)	2013/07/31		95	%	80 - 12
	Method Blank	Chromium (VI)	2013/07/31	ND, RI		ug/g	00 - 12
	RPD [SK6025-01]	Chromium (VI)	2013/07/31	ND, KL	2-0.2	ug/g %	
3299931 YY	Matrix Spike	1,4-Difluorobenzene	2013/08/01	NC	100	%	60 - 14
233331 11	mant Spike	-					
		4-Bromofluorobenzene	2013/08/01		106	%	60 - 14
		D10-Ethylbenzene	2013/08/01		108	%	60 - 14
		D4-1,2-Dichloroethane	2013/08/01		89	%	60 - 14

Quality Assurance Report (Continued)

QA/QC			Date				
Batch		_	Analyzed		_		
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
3299931 YY	Matrix Spike	F1 (C6-C10)	2013/08/01		97	%	60 - 140
	Spiked Blank	1,4-Difluorobenzene	2013/08/01		101	%	60 - 140
		4-Bromofluorobenzene	2013/08/01		103	%	60 - 140
		D10-Ethylbenzene	2013/08/01		100	%	60 - 140
		D4-1,2-Dichloroethane	2013/08/01		91	%	60 - 140
	Math and Diami	F1 (C6-C10)	2013/08/01		98	%	80 - 120
	Method Blank	1,4-Difluorobenzene	2013/08/01		96	%	60 - 140
		4-Bromofluorobenzene	2013/08/01		100	%	60 - 140
		D10-Ethylbenzene	2013/08/01		106	%	60 - 140
		D4-1,2-Dichloroethane	2013/08/01		92	%	60 - 140
		F1 (C6-C10)	2013/08/01	ND, RD		ug/g	
	000	F1 (C6-C10) - BTEX	2013/08/01	ND, RD	DL=10	ug/g	
	RPD	F1 (C6-C10)	2013/08/01	NC		%	50
		F1 (C6-C10) - BTEX	2013/08/01	NC	00	%	50
3300131 DEE	QC Standard	Sieve - #200 (<0.075mm)	2013/07/31		89	%	86 - 91
	000	Sieve - #200 (>0.075mm)	2013/07/31	40.0	11	%	9 - 14
	RPD	Sieve - #200 (<0.075mm)	2013/07/31	18.2		%	20
		Sieve - #200 (>0.075mm)	2013/07/31	4.9		%	20
3300191 VTH	RPD	Moisture	2013/08/01	NC	0.4	%	20
3300582 VIV	Matrix Spike	Acid Extractable Antimony (Sb)	2013/08/01		94	%	75 - 125
		Acid Extractable Arsenic (As)	2013/08/01		95	%	75 - 125
		Acid Extractable Barium (Ba)	2013/08/01		86	%	75 - 125
		Acid Extractable Beryllium (Be)	2013/08/01		97	%	75 - 125
		Acid Extractable Boron (B)	2013/08/01		90	%	75 - 125
		Acid Extractable Cadmium (Cd)	2013/08/01		96	%	75 - 125
		Acid Extractable Chromium (Cr)	2013/08/01		93	%	75 - 125
		Acid Extractable Cobalt (Co)	2013/08/01		97	%	75 - 125
		Acid Extractable Copper (Cu)	2013/08/01		95	%	75 - 125
		Acid Extractable Lead (Pb)	2013/08/01		96	%	75 - 125
		Acid Extractable Molybdenum (Mo)	2013/08/01		95	%	75 - 125
		Acid Extractable Nickel (Ni)	2013/08/01		94	%	75 - 125
		Acid Extractable Selenium (Se)	2013/08/01		99	%	75 - 125
		Acid Extractable Silver (Ag)	2013/08/01		96	%	75 - 125
		Acid Extractable Thallium (TI)	2013/08/01		93	%	75 - 125
		Acid Extractable Uranium (U)	2013/08/01		105	%	75 - 125
		Acid Extractable Vanadium (V)	2013/08/01		97 NC	%	75 - 125
		Acid Extractable Zinc (Zn)	2013/08/01		NC	%	75 - 125
	Callead Diami	Acid Extractable Mercury (Hg)	2013/08/01		100	%	75 - 125
	Spiked Blank	Acid Extractable Antimony (Sb)	2013/08/01		93	%	80 - 120
		Acid Extractable Arsenic (As)	2013/08/01		98	%	80 - 120
		Acid Extractable Barium (Ba)	2013/08/01		95	%	80 - 120
		Acid Extractable Beryllium (Be)	2013/08/01		92	%	80 - 120
		Acid Extractable Boron (B)	2013/08/01		88	%	80 - 120
		Acid Extractable Cadmium (Cd)	2013/08/01		98	%	80 - 120
		Acid Extractable Chromium (Cr)	2013/08/01		93	%	80 - 120
		Acid Extractable Cobalt (Co)	2013/08/01		99	%	80 - 120
		Acid Extractable Copper (Cu)	2013/08/01		97	%	80 - 120
		Acid Extractable Lead (Pb)	2013/08/01		101	%	80 - 120
		Acid Extractable Molybdenum (Mo)	2013/08/01		93	%	80 - 120
		Acid Extractable Nickel (Ni)	2013/08/01		99	%	80 - 120
		Acid Extractable Selenium (Se)	2013/08/01		100	%	80 - 120
		Acid Extractable Silver (Ag)	2013/08/01		98	%	80 - 120
		Acid Extractable Thallium (TI)	2013/08/01		88	%	80 - 120
		Acid Extractable Uranium (U)	2013/08/01		101	%	80 - 120
		Acid Extractable Vanadium (V)	2013/08/01		93	%	80 - 120

Quality Assurance Report (Continued)

QA/QC			Date			
Batch		Doromotor	Analyzed		l loito	001
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limit
3300582 VIV	Spiked Blank	Acid Extractable Zinc (Zn)	2013/08/01	100	%	80 - 12
	Mathed Diank	Acid Extractable Mercury (Hg)	2013/08/01	105 0.20	%	80 - 12
	Method Blank	Acid Extractable Antimony (Sb)	2013/08/01	ND, RDL=0.20	ug/g	
		Acid Extractable Arsenic (As)	2013/08/01	ND, RDL=1.0	ug/g	
		Acid Extractable Barium (Ba)	2013/08/01	ND, RDL=0.50	ug/g	
		Acid Extractable Beryllium (Be)	2013/08/01	ND, RDL=0.20	ug/g	
		Acid Extractable Boron (B)	2013/08/01	ND, RDL=5.0	ug/g	
		Acid Extractable Cadmium (Cd)	2013/08/01	ND, RDL=0.10	ug/g	
		Acid Extractable Chromium (Cr)	2013/08/01	ND, RDL=1.0	ug/g	
		Acid Extractable Cobalt (Co)	2013/08/01	ND, RDL=0.10	ug/g	
		Acid Extractable Copper (Cu)	2013/08/01	ND, RDL=0.50	ug/g	
		Acid Extractable Lead (Pb)	2013/08/01	ND, RDL=1.0	ug/g	
		Acid Extractable Molybdenum (Mo)	2013/08/01	ND, RDL=0.50	ug/g	
		Acid Extractable Nickel (Ni)	2013/08/01	ND, RDL=0.50	ug/g	
		Acid Extractable Selenium (Se)	2013/08/01	ND, RDL=0.50	ug/g	
		Acid Extractable Silver (Ag)	2013/08/01	ND, RDL=0.20	ug/g	
		Acid Extractable Thallium (TI)	2013/08/01	ND, RDL=0.050	ug/g	
		Acid Extractable Uranium (U)	2013/08/01	ND, RDL=0.050	ug/g	
		Acid Extractable Vanadium (V)	2013/08/01	ND, RDL=5.0	ug/g	
		Acid Extractable Zinc (Zn)	2013/08/01	ND, RDL=5.0	ug/g	
		Acid Extractable Mercury (Hg)	2013/08/01	ND, RDL=0.050	ug/g	
	RPD	Acid Extractable Antimony (Sb)	2013/08/01	NC	%	3
		Acid Extractable Arsenic (As)	2013/08/01	NC	%	3
		Acid Extractable Barium (Ba)	2013/08/01	3.1	%	3
		Acid Extractable Beryllium (Be)	2013/08/01	NC	%	3
		Acid Extractable Boron (B)	2013/08/01	NC	%	3
		Acid Extractable Cadmium (Cd)	2013/08/01	NC	%	3
		Acid Extractable Chromium (Cr)	2013/08/01	NC	%	Э
		Acid Extractable Cobalt (Co)	2013/08/01	7.9	%	3
		Acid Extractable Copper (Cu)	2013/08/01	0.3	%	3
		Acid Extractable Lead (Pb)	2013/08/01	7.8	%	3
		Acid Extractable Molybdenum (Mo)	2013/08/01	NC	%	3
		Acid Extractable Nickel (Ni)	2013/08/01	0.8	%	3
		Acid Extractable Selenium (Se)	2013/08/01	NC	%	Э
		Acid Extractable Silver (Ag)	2013/08/01	NC	%	3
		Acid Extractable Thallium (TI)	2013/08/01	NC	%	3
		Acid Extractable Uranium (U)	2013/08/01	10.3	%	3
		Acid Extractable Vanadium (V)	2013/08/01	NC	%	3
		Acid Extractable Zinc (Zn)	2013/08/01	2.8	%	3
		Acid Extractable Mercury (Hg)	2013/08/01	NC	%	3
3300619 L_A	Spiked Blank	Conductivity	2013/08/01	100	%	90 - 11
	Method Blank	Conductivity	2013/08/01	ND, RDL=0.002	mS/cm	
	RPD	Conductivity	2013/08/01	8.8	%	1
3300621 AFZ	Matrix Spike	Hot Water Ext. Boron (B)	2013/08/01	94	%	75 - 12
	Spiked Blank	Hot Water Ext. Boron (B)	2013/08/01	96	%	75 - 12
	Method Blank	Hot Water Ext. Boron (B)	2013/08/01	ND, RDL=0.050	ug/g	
	RPD	Hot Water Ext. Boron (B)	2013/08/01	NC	%	3
3300848 AFZ	Matrix Spike					
	[SK6004-01]	Hot Water Ext. Boron (B)	2013/08/02	100	%	75 - 12
	Spiked Blank	Hot Water Ext. Boron (B)	2013/08/02	101	%	75 - 12
	Method Blank	Hot Water Ext. Boron (B)	2013/08/02	ND, RDL=0.050	ug/g	
	RPD [SK6004-01]	Hot Water Ext. Boron (B)	2013/08/02	NC	%	3
3301361 RUS	Matrix Spike	F4G-sg (Grav. Heavy Hydrocarbons)	2013/08/01	94	%	65 - 13
	Spiked Blank	F4G-sg (Grav. Heavy Hydrocarbons)	2013/08/01	94	%	65 - 13
	Method Blank	F4G-sg (Grav. Heavy Hydrocarbons)	2013/08/01	ND, RDL=100	ug/g	

Quality Assurance Report (Continued)

Maxxam Job Number: MB3C2252

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
3301361 RUS	RPD	F4G-sg (Grav. Heavy Hydrocarbons)	2013/08/01	NC		%	50

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was not sufficiently significant to permit a reliable recovery calculation.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

(1) VOC Analysis: (compounds) Detection limit raised due to interference.

(2) The matrix spike recovery was below the lower control limit. This may be due in part to the reducing environment of the sample.

Validation Signature Page

Maxxam Job #: B3C2252

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Martal

Mandouh Salib, Analyst, Hydrocarbons

Yuan Zhou, gc\ms Technician

Juzana Pepuru' Suzana Popovic, Supervisor, Hydrocarbons

Jeevaraj Jeevaratrnam, Senior Analyst

listin Carriere

Cristina Carriere, Scientific Services

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

	INV	OICE INFORMATIC	mpobello Road, Mississauga, NI:				FORMATIC							P	ROJECT IN	FORMATIC	ON:			26-Jul-13 09:45	/
pany Name:	#8866 Ec	coplans Limited		Compa	ny Name:				101			Qu	iotation #:	B	34521	ų i			Jo	olanta Goralczyk BOTTLE ORDI	ER #:
tact Name:	Accounts I	Salar Incom			t Name:	Natali	ia Codoba	In	1				O. #:		anna Cui		47			428431	1
ess:	and the second s	h Sheridan Wa	Contraction of the second seco	Addres	S:	-					-		oject #: oject Name	112	onge Sul	bway Ext	tention		0.11	D2C2252	LOPP
18.	(905)823-4	ga ON L5K 2P 4988	Fax (905)823-2669	Phone:		(905)	823-4988	x1347	Fa	x	18		e #:			All Line			G		
it.	- Constanting	ayable@mmm		Email:			banN@m	124-				Sa	mpled By:							ENV-598 Jolanta Gorald	:2ук
Regula	tion 153 (2011)		Other Regulation	15	SPECIA	L INSTRU	CTIONS	~			A	NALYSIS F	REQUESTE	D (Please	be specific	c):	_			TURNAROUND TIME (TAT) REQUIRED:	
Table 2 In Table 3 A Table	d/Comm	Aedium/Fine Coarse For RSC	CCME Sanitary Se Reg. 558 Storm Saw MISA Municipality _ PWQO Other r Analysis (Y/N)? / samples - please use the Dril	ar Bylaw	n of Custody F	orm		Regulated Drinking Water ? (Y / N Metals Field Filtered ? (Y / N)	153 Metals & nics Pkg (Soil)	O'Reg 153 PAHs (Soil)	O'Reg 153 Volatile Organics (Soil) ナールのされへの	O'Reg 153 Petroleum Hydrocarbons (Soil)	O.Reg 558 TCLP Inorganics Package	58 TCLP Leachate tion	Analysis PT				Regular ((will be ap Standard Please no days - con Job Spec	PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS (Standard) TAT: pplied if Rush TAT is not specified): ITAT = 5-7 Working days for most tests. ITAT = 5-7 Working days for most tests is Standard TAT for certain tests such as BOD and Dioxins/Furan ntact your Project Manager for details. cific Rush TAT (if applies to entire submission) uired: Time Required:	
			°C) FROM TIME OF SAMPLI	_	_	_		QUL	eg 1 gani	eg 1	eg 1	eg 1 roca	O.Reg 5! Package	eg 5 oara	sve				Rush Con	firmation Number:	
Sample Bar		81	ocation) Identification	Date Sample			Matrix	Regulat Metals I	O'Reg 153 Inorganics	O'R	O'Reg (Soil)	O'R Hyd	O.R Pac	O.Reg 558 7 Preparation	Sie	-			# of Bottles	(call lab for #) Comments	
		-		-			5911		V										1	TCLP- pl. hold the sample until further instructional	repr
BH7 (7	5-9.51			N							V			\checkmark				_	5		1
BH7 (10	(-12')		ibway Extensi	N					V										J	*	
BH7 (13				N	-				•		-	V					1		1	and the second second	
BH7(19	5- (7)			25774	'y		uu N			V									J		
вн4(0	- 2')	<u>.</u>		N						V		V							2		N.
<u>ВН7(14</u> ВН 4 (0 ВН4(2	(5-4.5)			N			×.		V										1.		
BHY (-	7.5-8.5)			N							V		1						\$		
BH4 (1	0-12'			N		0									V.		6. j.	sm			
BH4 (1	2.5_14.2)	V	N			V		V								4	A IN WE IN A	l)		
101	NOUISHED BY:	(Signature/Print)	Date: (YY)		Time:	ũf			: (Signatur 1 SPA 7		2_		ate: (YY/M)			ime: :45		Used and Ibmitted	Time Se	Laboratory Use Only ensitive Temperâture (°C) on Receipt Custody Seal Yes Present I (s No

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

	INV	DICE INFORMATION	ł:		REPO	RT INFORMAT	ION (if dif	fers from in	voice):				P	ROJECT IN	FORMATI	ON:			Laboratory Use	Page Q of 2
npany Name:	#8866 Ec	oplans Limited		Company Narr	ю:						Q	uotation #:	В	34521					MAXXAM JOB #:	BOTTLE ORDER #:
act Name:	Accounts I	Payable		Contact Name	Na	atalia Codol	ban				P	0.#:				78			•	and an address of the second s
ISS:	2655 North	Sheridan Way	Suite 280	Address:		THE LE					P	roject #:	Y	onge Su	bway Ex	tention		117		428431
	Mississaug	a ON L5K 2P8								10., <u>1</u>	P	roject Name	e 🗌				nen dag		CHAIN OF CUSTODY #:	PROJECT MANAGER:
e:	(905)823-4	988	Fax (905)823-2669	Phone:	(9	05)823-498	8 x1347	Fa	ĸ		s	te #:						11		1 T
t:	accountsp	ayable@mmm.	a	Email:	Co	odobanN@	nmm.ca				S	ampled By:		i dan				- "	C#428431-06-01	Jolanta Goralózyk
Regula	ition 153 (2011)		Other Regulations	S	PECIAL INST	RUCTIONS	IT			A	ALYSIS	REQUEST	ED (Please	e be specific	;):	-			TURNAROUND TIME (TAT)	REQUIRED
/ _		П	CCME Sanitary Sew	er Rulaw			Z			10									PLEASE PROVIDE ADVANCE NOTICE F	CONTRACTOR OF THE OWNER
Table 2 1	nd/Comm C Igri/Other	edium/Fine	Reg. 558 Storm Sewer MISA Municipality PWQO Other				ing Water ? (Y/ sred ? (Y/N)	O'Reg 153 Metals & Inorganics Pkg (Soil)	O'Reg 153 PAHs (Soil)	O'Reg 153 Volatile Organics (Soil) + MarShune	O'Reg 153 Petroleum Hydrocarbons (Soil)	O.Reg 558 TCLP Inorganics Package	O.Reg 558 TCLP Leachate Preparation	Anglysis pT	2			(will be a) Standard Please no	(Standard) TAT: oplied if Rush TAT is not specified): TAT = 5-7 Working days for most tests. ote: Standard TAT for certain tests such as ntact your Project Manager for details.	D
	Include Criter	ia on Certificate of	Analysis (Y)N)?	h	23.2		Drinking d Filtered	Me	PA	1º É	Pet	10	TC	W.					cific Rush TAT (if applies to entire subm	ission)
Not	e: For MOE regul	ated drinking water s	amples - please use the Drinki	ng Water Chain of Cus	tody Form		0 0	153 ics	153	153	153 arbc	558 e	558 tion	00				Date Req	uired: Time F	Required:
SAM	IPLES MUST BE	KEPT COOL (< 10%) FROM TIME OF SAMPLING	UNTIL DELIVERY TO) MAXXAM		Regulate Metals Fi	eg gan	eg	eg - (1	eg '	eg kag	eg (sieve				Rush Con	firmation Number:	
Sample Bar	code Label	Sampla (Lo	cation) Identification	Date Sampled Ti	me Sampled	Matrix	Reg	D'R	O'R	O'R	Hyd	D.R.	D.R.	isis				# of Bottles		ab for #)
ounpie bar	COUC LUDG	oumpid (Lo	callory identification	Date dampled	ne admyiou	MdulA					0 1	0 H	0 1					Bottles	Commen	ls
D5		Yang Sut	way Extension	251744		Soit				V								4		
3#5(2	1 2			N				V										1	and a state	
345(9	5-4.5)			N					V		\checkmark				-			2	1	<u> </u>
BHSQI				N						\checkmark		- 1				1		4		1
	11			N.																
2426	7.5-29.5			14.				V					_			_		1		
DI				N	2			V							-			1		
Da				N				V		-								1		
NW4 (0	-25	1 A A		N						V	V							5		ła
Au/11/-	VEU'A	0.012		N				\checkmark						/		1) 1.1		2		
awill	5-71	N		N					1							1		1		
WVGC		1			_	W						1			-					
	chman		Date: (YY/MM 13/07/		5 5	RECE YU-	NUC	(Signature) SIDA 7	Print)	72	Da 251	1e: (YY/MN 3/07	1/2.6	U9.	ne: 245		lsed and bmitted	Time Ser	Laboratory Use Onlinisitive Temperature (°C) on Receipt	Custody Seal Yes No Present
			ENSURE THE ACCURACY (8.57	14218,180	Intact

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxai	Maxxam Analytics International Corporation o/a Maxxam Analytics	6740 Campobello Road, Mississauga, Ontario, L5N 2L8	Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax:	(905) 817-5777 www.maxxam.c/
--	---	---	--	------------------------------

	INV	OICE INFORMA	TION:			REPORT INFORM		63-6266 Fa ffers from i	Constant Sector	-			1	PROJECT	FORMA	TION			Laboratory Us	Page 3 of
ipany Name:	#8866 E	coplans Limi	ted	Co	mpany Name:						(Quotation #		334521					Laboratory Us MAXXAM JOB #:	
act Name:	Accounts	Payable		Co	ntact Name:	Natalia Cod	oban	RME.			F	P.O. #.				4/ *			MAXAAM JUB #:	BOTTLE ORDER #:
55;	2655 Nort	h Sheridan V	Vay Suite 280	Adi	dress:				1		F	Project #:	Y	onge Su	bway E	xtention				428431
	Mississau	ga ON L5K 2	2P8				L) EUR				F	Project Nam	201						CHAIN OF CUSTODY #:	
x	(905)823-4	4988	Fax (905)823-2669	9 Ph	one:	(905)823-49	88 x134	7 Fa	ax.		5	Site #:								PROJECT MANAGER:
	accountsp	ayable@mm	nm.ca	Em	ail:	CodobanN@)mmm.c	a			5	Sampled By		Lμ			-		C#428431-01-01	Jolanta Goralczyk
Regu	lation 153 (2011)		Other Regulation	าร	SPECI	AL INSTRUCTIONS				ļ	NALYSIS	REQUEST	ED (Pleas	e be specific	c):				TURNAROUND TIME (TAT	DEQUIDED
able 2 🔽	Ind/Comm	Medium/Fine loarse or RSC	CCME Sanitary Se Reg. 558 Storm Sew MISA Municipality PWQO Other				inking Water ? (Y / N	153 Metals & nics Pkg (Soil)	1 7	O'Reg 153 Volatile Organics (Soil) + Mai Sturve	O'Reg 153 Petroleum Hydrocarbons (Soil)	LP Inorganics	LP Leachate					(will be a) Standard Please n	PLEASE PROVIDE ADVANCE NOTICE (Standard) TAT: pplied if Rush TAT is not specified): I TAT = 5-7 Working days for most tests. ota: Standard TAT for certain tests such as	FOR RUSH PROJECTS
			e of Analysis (YN)?				- C 14	Met	PAI	Vola	Pet	1CI	TCI					Job Sper	ntact your Project Manager for details. cific Rush TAT (if applies to entire subn	nission)
_		-	ter samples - please use the Drir	8	ß		ield Di	153 ics	53	53	53 arbo	O.Reg 558 TCLP Package	O.Reg 558 TCLP Preparation				_	Date Req		Required:
SA	MPLES MUST BE	KEPT COOL (<	10°C) FROM TIME OF SAMPLI	NG UNTIL DE	LIVERY TO MAX	CXAM	Regulate Metals F	eg u	50	1 B0 (eg 1	eg 5	eg 5 ara					Rush Con	firmation Number:	
Sample Ba	arcode Label	Sample	e (Location) Identification	Date Sam	pled Time Sa	mpled Matrix	Reg	O'Reg Inorgar	O'R	O'Re((Soil)	Y'Re	O.Re	D.R.							lab for #)
		0.0	(accuracy reconstruction	Date Gan	pied Time Se	impled Mainx		10-	<u>,</u>	03	01	04	Οd					# of Bottles	Comme	nts
W4 (1	25-133)	Yang	g Subway Extension	25/3	uly	Sait			\checkmark									1		
w4(§	1.8.1	(27.5	-28.7)	N	0			1						*				1	ė	
23				N					V						-			1		
D4	9 A. A.	814 2		N					V			-				J ⁰		1		×
VI	240 8										_							1		
W5(a	5-4.5)			2412	uy	und		\checkmark					-	~	4			\$		
N5 (8.	5-4.5) 5- 8 .5)	0		N					~	V								5	1.	
W5(-8	2-12/	11 ⁴ -		N					V	_								1		
NCH	15-131	A 2	-	$^{\checkmark}$	-						V							1		
wici =	7.5.29	0						1										1		
M D (C	1027			N			18	V							_	1		1		
RETEAD						V							-						8	
Rah	NQUISHED BY: (S		Date: (YY/M 13/07)		Time: 9:50	REC		(Signature) (P47		2		te: (YY/MN 3/07		Tin 6920	100		lsed and bmitted	Time Sea	Laboratory Use Only	Custody Seal Yes No
			TO ENSURE THE ACCURACY			1	1454	54 - 57-					1 2					1	16.18 19:	Present 7

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, MIssissauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

					- 11						83658	
	1.	REPORT	INFO	RM	A. 100	B3C2				PROJECT INFO	and the second second	MAXXAM JOB NUMBER
mpany Name: 2655 North Sheric		Company Name:	-		- S					B34	221	
rest Name: Way, nississange dress: MMM Croup (td		Contact Name:			1.1							CHAIN OF CUSTODY #
dress: MMM O-roup (ta		Address:							Project #:	and a second second	Lun Enter	
1905 18038 GOL FOX (CAS) 823	169	Phone:			Fax:				Site Loca	TION: YOUD SE	way Exter	00
one: (905) 8238500 Fax: (905) 8232	100 1	Fmail:			- T dA,			511	1	By: S.R.		00
Note: For MOE Regulated Drinking Water samples, please	h			A.b.		ECTED	(Diagona			1		
Regulation 153 (2011)	Other Regula			AD	IALYSIS REQU	ESTED	(Please	be spe	ecnic)	A DOLLAR A	NAROUND TIME (1 ROVIDE ADVANCE	E NOTICE FOR RUSH
Table 1 Res/Park Med/Fine CCME		ry Sewer Bylaw	(N/)								PROJECT	
Table 2 Ind/Comm Coarse Reg. 558	-	Sewer Bylaw	r? (Y							Regular (Standa (5-7 w	rd) TAT: orking days for most	tests)
Table 3 Agri/Other For RSC MISA			Vate	î	S					Rush TAT:	and a superior most	
Table Yes PWQO	 Municipali 	ty:	Drinking Water?	Filtered? (Y / N)	1527					A COMPANY OF THE COMPANY	ust be received by 3p	m to guarantee your TAT***
No Other (s	ecify):		rink	¿pa.	191					Rush Confirm	nation #: PN	
				-ilter	F					1 day	2 days	3 days
Include Criteria on Certificate of			Regulated	eld F	ann					Date Req'd:		
AMPLES MUST BE KEPT COOL (<1 AMPLING UNTIL DELIVERY TO MAXXAM.	0°C) FRO	M TIME OF	Reg	Is Fi	istur						are > 5 days. Please conta	ct your Project Manager for details.
Sample Identification Date	Time	Matrix	MOE	Metals Field	and a					# of	COMMENTS / TA	AT COMMENTS
Sample Sample	sampled	(GW, SW, Soil, etc.)	4	4			+			Cont.		
25/70	uy	Sail								1		
7 .	_											
		197										15
t												
		1.1										
9			-									
						-						
				-					-		36	
RELINQUISHED BY (Signature/Print) Date (YYYY/M	(DD) Time:	PECEWED	BV. (0	lian	(Drine)	Detro		1/001	T	#JARS USED AN		verteen Line Onto
13/07/		RECEIVED		-	VIDCHAN		107/2		Time:	NOT SUBMITTE		Temperature (°C) on Receipt
1 11 1 10/10/11	d	a week	-	UN	NUCHIN	0010	10110	1	10.31		Seal Yes No	

4

n di Generation

-

Maxxam Analytics International Corporation o/a Maxxam Analytics	6740 Campobello Road, Mississauga, Onta	ario, L5N 2L8 Tel: (905) 817-5700 T	foll-Free: 800-563-626	6 Fax: (905) 817-5777 www.maxxam.ca

Table C1: Summary of Analytical ResultsMetals and Inorganic Parameters in GroundwaterYonge Subway Extension EPR Addendum

Sample ID Well Screen (mbgs) Job # Sampling Date	MOE Table 3 - Non-potable, fine textured	MOE Table 1 - Background, fine textured	Reporting Limit	Units	MW4 8.2 - 9.8 VO6878 16-Apr-14	MW5 9.8 - 11.3 VO6877 16-Apr-14
Antimony (Dissolved)	20000	1.5	0.50	ug/L	<0.50	1.1
Arsenic (Dissolved)	1900	13	1.0	ug/L	2.3	1.6
Barium (Dissolved)	29000	610	2.0	ug/L	47	240
Beryllium (Dissolved)	67	0.5	0.50	ug/L	<0.50	<0.50
Boron (Dissolved)	45000	1700	10	ug/L	160	51
Cadmium (Dissolved)	2.7	0.5	0.10	ug/L	<0.10	<0.10
Chloride (Dissolved)	2300000	790000	1	mg/L	23	21
Chromium (Dissolved)	810	11	5.0	ug/L	<5.0	<5.0
Chromium (VI)	140	25	0.5	ug/L	<0.5	<0.5
Cobalt (Dissolved)	66	3.8	0.50	ug/L	<0.50	<0.50
Copper (Dissolved)	87	5	1.0	ug/L	1.0	<1.0
Free Cyanide	66	5	2.0	ug/L	<2.0	<2.0
Lead (Dissolved)	25	1.9	0.50	ug/L	<0.50	<0.50
Molybdenum (Dissolved)	9200	23	0.50	ug/L	<u>150</u>	<u>27</u>
Nickel (Dissolved)	490	14	1.0	ug/L	1.0	<1.0
Selenium (Dissolved)	63	5	2.0	ug/L	<2.0	<2.0
Silver (Dissolved)	1.5	0.3	0.10	ug/L	<0.10	<0.10
Sodium (Dissolved)	2300000	490000	100	ug/L	210000	33000
Thallium (Dissolved)	510	0.5	0.050	ug/L	<0.050	<0.050
Uranium (Dissolved)	420	8.9	0.10	ug/L	<u>58</u>	3.1
Vanadium (Dissolved)	250	3.9	0.50	ug/L	3.5	<u>5.2</u>
Zinc (Dissolved)	1100	160	5.0	ug/L	<5.0	<5.0

Notes:

NM = Not Measured; NV = No Value

Criteria Used: Soil, Groundwater and Sediment Standars for Use under Part XV.1 of the Environmental Protection Act, MOE (2011). Table 3 "Non-potable Ground Water - All Types of Property Use, Medium/Fine textured soil", AND Table 1 "Background - All Types of Property Use, Medium/Fine textured soil".

10	Exceeds Table 3 - Non-potable ground water limits
<u>10</u>	Exceeds Table 1 - Background Limits
<u>10</u>	Exceeds Table 1 - Background AND Table 3 - Non-potable ground water limits

Table C2: Summary of Analytical ResultsPetroleum Hydrocarbons in GroundwaterYonge Subway Extension EPR Addendum

Sample ID Well Screen (mbgs) Job # Sampling Date	MOE Table 3 - Non-potable, fine textured	MOE Table 1 - Background, fine textured	Reporting Limit	Units	MW4 8.2 - 9.8 VO6878 16-Apr-14	MW5 9.8 - 11.3 VO6877 16-Apr-14
F1 (C6-C10)	750	420	100	ug/L	<25	<25
F1 (C6-C10) - BTEX	750	420	200	ug/L	<25	<25
F2 (C10-C16 Hydrocarbons)	150	150	100	ug/L	<100	<100
F3 (C16-C34 Hydrocarbons)	500	500	200	ug/L	<200	<200
F4 (C34-C50 Hydrocarbons)	500	500	200	ug/L	<200	<200
Reached Baseline at C50	NV	NV	NV	NV	YES	YES

Notes:

NM = Not Measured

<u>10</u> 10

NV = No Value

Criteria Used: Soil, Groundwater and Sediment Standars for Use under Part XV.1 of the Environmental Protection Act, MOE (2011). Table 3 "Non-potable Ground Water - All Types of Property Use, Medium/Fine textured soil", AND Table 1 "Background - All Types of Property Use, Medium/Fine textured soil".

10	Exceeds Table 3 - Non-potable ground water limits
----	---

Exceeds Table 1 - Background Limits

Exceeds Table 1 - Background AND Table 3 - Non-potable ground water limits

Table C3: Summary of Analytical Results Volatile Organic Compounds in Groundwater Yonge Subway Extension EPR Addendum

Well Screen (mbgs) Job # MODE Table 3- fine textured fine textured fine textured fine textured Reporting Limit Nan- bit Screen Limit 8.2 - 9.8 (Sample ID					MW4	MW5	
Job # Non-polable, fine textured Limit fine textured Umst fine textured Umst fine textured Umst Vo6878 V06877 Acetone 130000 2700 10 ug/L <10 <10 Benzene 430 0.5 0.20 ug/L <0.20 <0.20 <0.20 <0.20 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20		MOE Table 3 -	MOE Table 1 -	Reporting				
Sampling Dato Time textured Time tex					Units			
Acetone 130000 2700 10 ug/L <10		fine textured	fine textured					
Benzene 430 0.5 0.20 ug/L <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.		130000	2700	10	ua/l		-	
Bromodichloromethane 85000 2 0.50 ug/L <0.50 <0.50 Bromodirm 770 5 1 ug/L <1.0								
Bromoform 770 5 1 ug/L <1.0 <1.0 Bromomethane 56 0.89 0.50 ug/L <0.50								
Bromomethane 56 0.89 0.50 ug/L <0.50 <0.50 Carbon Tetrachioride 8.4 0.2 0.20 ug/L <0.20								
Carbon Tetrachloride 8.4 0.2 0.20 ug/L <0.20 <0.20 Chloroform 22 2 0.20 ug/L <0.20								
Chlorobenzene 630 0.5 0.20 ug/L <0.20 <0.20 Chloroform 22 2 0.20 ug/L <0.20	Carbon Tetrachloride	8.4						
Chloroform 22 2 0.20 ug/L <0.20 <0.20 Dibromochloromethane 82000 2 0.50 ug/L <0.50					<u> </u>			
Dibromochloromethane 82000 2 0.50 ug/L <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50								
1.2-Dichlorobenzene 9600 0.5 0.50 ug/L <0.50	Dibromochloromethane	82000						
1,3-Dichlorobenzene 9600 0.5 0.50 ug/L <0.50 <0.50 1,4-Dichlorobenzene 67 0.5 0.50 ug/L <0.50			0.5					
1,4-Dichlorobenzene 67 0.5 0.50 ug/L <0.50 <0.50 1,1-Dichloroethane 3100 0.5 0.20 ug/L <0.20	•							
1.1-Dichloroethane 3100 0.5 0.20 ug/L <0.20 <0.20 1.2-Dichloroethane 12 0.5 0.50 ug/L <0.50								
1,2-Dichloroethane 12 0.5 0.50 ug/L <0.50								
1,1-Dichloroethylene 17 0.5 0.20 ug/L <0.20 <0.20 Cis-1,2-Dichloroethylene 17 1.6 0.50 ug/L <0.50								
Cis-1,2-Dichloroethylene 17 1.6 0.50 ug/L <0.50 <0.50 Trans-1,2-Dichloroethylene 17 1.6 0.50 ug/L <0.50								
Trans-1,2-Dichloroethylene 17 1.6 0.50 ug/L <0.50 <0.50 1,2-Dichloropropane 140 0.5 0.20 ug/L <0.20					<u> </u>			
1,2-Dichloropropane 140 0.5 0.20 ug/L <0.20								
Cis-1,3-Dichloropropylene 45 0.5 0.30 ug/L <0.30 <0.30 Trans-1,3-Dichloropropylene 45 0.5 0.40 ug/L <0.40	,	140						
Trans-1,3-Dichloropropylene 45 0.5 0.40 ug/L <0.40 <0.40 Ethylbenzene 2300 0.5 0.20 ug/L <0.20		45						
Ethylbenzene 2300 0.5 0.20 ug/L <0.20 <0.20 Ethylene Dibromide 0.83 0.2 0.20 ug/L <0.20								
Ethylene Dibromide 0.83 0.2 0.20 ug/L <0.20 <0.20 Methyl Ethyl Ketone 1500000 400 10 ug/L <10		2300	0.5	0.20		<0.20		
Methylene Chloride 5500 5.0 2.0 ug/L <2.0 <2.0 Methyl Isobutyl Ketone 580000 640 5.0 ug/L <5.0	Ethylene Dibromide	0.83	0.2	0.20		<0.20	<0.20	
Methyl Isobutyl Ketone 580000 640 5.0 ug/L <5.0 <5.0 Methyl-t-Butyl Ether 1400 15 0.50 ug/L <0.50	Methyl Ethyl Ketone	1500000	400	10	ug/L	<10	<10	
Methyl-t-Butyl Ether 1400 15 0.50 ug/L <0.50 <0.50 Styrene 9100 0.5 0.50 ug/L <0.50	Methylene Chloride	5500	5.0	2.0	ug/L	<2.0	<2.0	
Methyl-t-Butyl Ether 1400 15 0.50 ug/L <0.50 <0.50 Styrene 9100 0.5 0.50 ug/L <0.50	Methyl Isobutyl Ketone	580000	640	5.0	×	<5.0	<5.0	
1,1,1,2-Tetrachloroethane281.10.50ug/L<0.50<0.501,1,2,2-Tetrachloroethane150.50.50ug/L<0.50	Methyl-t-Butyl Ether	1400	15	0.50		<0.50	<0.50	
1,1,2,2-Tetrachloroethane150.50.50ug/L<0.50<0.50Toluene180000.80.20ug/L<0.20	Styrene	9100	0.5	0.50	ug/L	<0.50	<0.50	
Toluene 18000 0.8 0.20 ug/L <0.20 <0.20 Tetrachloroethylene 17 0.5 0.20 ug/L <0.20	1,1,1,2-Tetrachloroethane	28	1.1	0.50	ug/L	<0.50	<0.50	
Tetrachloroethylene 17 0.5 0.20 ug/L <0.20 <0.20 1,1,1-Trichloroethane 6700 0.5 0.20 ug/L <0.20	1,1,2,2-Tetrachloroethane	15	0.5	0.50	ug/L	<0.50	<0.50	
1,1,1-Trichloroethane 6700 0.5 0.20 ug/L <0.20 <0.20 1,1,2-Trichloroethane 30 0.5 0.50 ug/L <0.20	Toluene	18000	0.8	0.20	ug/L	<0.20	<0.20	
1,1,2-Trichloroethane 30 0.5 0.50 ug/L <0.50 <0.50 Trichloroethylene 17 0.5 0.20 ug/L <0.20	Tetrachloroethylene	17	0.5	0.20	ug/L	<0.20	<0.20	
Trichloroethylene 17 0.5 0.20 ug/L <0.20 <0.20 Vinyl Chloride 1.7 0.5 0.20 ug/L <0.20	1,1,1-Trichloroethane	6700	0.5	0.20	ug/L	<0.20	<0.20	
Vinyl Chloride 1.7 0.5 0.20 ug/L <0.20 <0.20 m-Xylene & p-Xylene NV NV 0.20 ug/L <0.20	1,1,2-Trichloroethane	30	0.5	0.50	ug/L	<0.50	<0.50	
Vinyl Chloride 1.7 0.5 0.20 ug/L <0.20 <0.20 m-Xylene & p-Xylene NV NV 0.20 ug/L <0.20	Trichloroethylene			0.20	ug/L	<0.20	<0.20	
o-Xylene NV NV 0.20 ug/L <0.20 <0.20 Total Xylenes 4200 72 0.20 ug/L <0.20	Vinyl Chloride	1.7	0.5	0.20		<0.20	<0.20	
o-Xylene NV NV 0.20 ug/L <0.20 <0.20 Total Xylenes 4200 72 0.20 ug/L <0.20	m-Xylene & p-Xylene	NV	NV	0.20	ug/L	<0.20	<0.20	
Dichlorodifluoromethane 4400 590 1.0 ug/L <1.0 <1.0 Dioxane, 1,4- 7300000 50 - ug/L - Hexane(n) 520 5 1.0 ug/L <1.0		NV	NV	0.20	ug/L	<0.20	<0.20	
Dioxane, 1,4- 7300000 50 - ug/L - Hexane(n) 520 5 1.0 ug/L <1.0	Total Xylenes	4200	72	0.20	ug/L	<0.20	<0.20	
Hexane(n) 520 5 1.0 ug/L <1.0 <1.0	Dichlorodifluoromethane	4400	590	1.0	ug/L	<1.0	<1.0	
	Dioxane, 1,4-	7300000	50	-	ug/L	-		
Trichlorofluoromethane 2500 150 0.50 ug/L <0.50 <0.50	Hexane(n)			1.0	ug/L	<1.0	<1.0	
	Trichlorofluoromethane	2500	150	0.50	ug/L	<0.50	<0.50	

Notes:

NM = Not Measured NV = No Value

Criteria Used: Soil, Groundwater and Sediment Standars for Use under Part XV.1 of the Environmental Protection Act, MOE (2011). Table 3 "Non-potable Ground Water - All Types of Property Use, Medium/Fine textured soil", AND Table 1 "Background - All Types of Property Use, Medium/Fine textured soil".

10	Exceeds Table 3 - Non-potable ground water limits
<u>10</u>	Exceeds Table 1 - Background Limits
<u>10</u>	Exceeds Table 1 - Background AND Table 3 - Non-potable ground water limits

Maxiam

Your P.O. #: 3277670-000-800-094 Your Project #: 3277670 Site Location: YONGE SUBWAY EXTENSION Your C.O.C. #: 46693801, 466938-01-01

Attention: Sanam Rahmanian

MMM Group Limited 2655 North Sheridan Way Suite 280 Mississauga, ON CANADA L5K 2P8

> Report Date: 2014/04/24 Report #: R3010161 Version: 2

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B461969 Received: 2014/04/17, 08:00

Sample Matrix: Water # Samples Received: 2

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
1,3-Dichloropropene Sum	2	N/A	2014/04/24 CAM SOP-00226	EPA 8260
Chloride by Automated Colourimetry	2	N/A	2014/04/22 CAM SOP-00463	EPA 325.2
Chromium (VI) in Water	2	N/A	2014/04/17 CAM SOP-00436	EPA 7199
Free (WAD) Cyanide	2	N/A	2014/04/22 CAM SOP-00457	Ontario MOE CN-E3015
Petroleum Hydro. CCME F1 & BTEX in Water	2	N/A	2014/04/23 CAM SOP-00315	CCME CWS
Petroleum Hydrocarbons F2-F4 in Water	2	2014/04/17	2014/04/21 CAM SOP-00316	CCME Hydrocarbons
Lab Filtered Metals by ICPMS	2	2014/04/22	2014/04/22 CAM SOP-00447	EPA 6020
Volatile Organic Compounds in Water	2	N/A	2014/04/23 CAM SOP 00228	EPA 8260 modified

Remarks:

Maxxam Analytics has performed all analytical testing herein in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Reporting results to two significant figures at the RDL is to permit statistical evaluation and is not intended to be an indication of analytical precision.

The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following the 'Alberta Environment Draft Addenda to the CWS-PHC, Appendix 6, Validation of Alternate Methods'. Documentation is available upon request. Maxxam has made the following improvements to the CWS-PHC reference benchmark method: (i) Headspace for F1; and, (ii) Mechanical extraction for F2-F4. Note: F4G cannot be added to the C6 to C50 hydrocarbons. The extraction date for samples field preserved with methanol for F1 and Volatile Organic Compounds is considered to be the date sampled.

Maxxam Analytics is accredited for all specific parameters as required by Ontario Regulation 153/04. Maxxam Analytics is limited in liability to the actual cost of analysis unless otherwise agreed in writing. There is no other warranty expressed or implied. Samples will be retained at Maxxam Analytics for three weeks from receipt of data or as per contract.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

* Results relate only to the items tested.

MMM Group Limited Client Project #: 3277670 Site Location: YONGE SUBWAY EXTENSION Your P.O. #: 3277670-000-800-094

-2-

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Jolanta Goralczyk, Project Manager Email: JGoralczyk@maxxam.ca Phone# (905) 817-5751

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 2

Page 2 of 13

MMM Group Limited Client Project #: 3277670 Site Location: YONGE SUBWAY EXTENSION Your P.O. #: 3277670-000-800-094

RESULTS OF ANALYSES OF WATER

Maxxam ID		VO6877	VO6878		
Sampling Date		2014/04/16 16:10	2014/04/16 15:00		
	Units	MW5	MW4	RDL	QC Batch
Inorganics					
Free Cyanide	ug/L	ND	ND	2	3579604
Dissolved Chloride (CI)	mg/L	21	23		3578324

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		VO6877	VO6878		
Sampling Date		2014/04/16 16:10	2014/04/16 15:00		
	Units	MW5	MW4	RDL	QC Batch
Metals					
Chromium (VI)	ug/L	ND	ND	0.50	3576804
Dissolved Antimony (Sb)	ug/L	1.1	ND	0.50	3579733
Dissolved Arsenic (As)	ug/L	1.6	2.3	1.0	3579733
Dissolved Barium (Ba)	ug/L	240	47	2.0	3579733
Dissolved Beryllium (Be)	ug/L	ND	ND	0.50	3579733
Dissolved Boron (B)	ug/L	51	160	10	3579733
Dissolved Cadmium (Cd)	ug/L	ND	ND	0.10	3579733
Dissolved Chromium (Cr)	ug/L	ND	ND	5.0	3579733
Dissolved Cobalt (Co)	ug/L	ND	ND	0.50	3579733
Dissolved Copper (Cu)	ug/L	ND	1.0	1.0	3579733
Dissolved Lead (Pb)	ug/L	ND	ND	0.50	3579733
Dissolved Molybdenum (Mo)	ug/L	27	150	0.50	3579733
Dissolved Nickel (Ni)	ug/L	ND	1.0	1.0	3579733
Dissolved Selenium (Se)	ug/L	ND	ND	2.0	3579733
Dissolved Silver (Ag)	ug/L	ND	ND	0.10	3579733
Dissolved Sodium (Na)	ug/L	33000	210000	100	3579733
Dissolved Thallium (TI)	ug/L	ND	ND	0.050	3579733
Dissolved Uranium (U)	ug/L	3.1	58	0.10	3579733
Dissolved Vanadium (V)	ug/L	5.2	3.5	0.50	3579733
Dissolved Zinc (Zn)	ug/L	ND	ND	5.0	3579733

MMM Group Limited Client Project #: 3277670 Site Location: YONGE SUBWAY EXTENSION Your P.O. #: 3277670-000-800-094

VOLATILE ORGANICS BY GC/MS (WATER)

Maxxam ID		VO6877	VO6878		
Sampling Date		2014/04/16 16:10	2014/04/16 15:00		
	Units	MW5	MW4	RDL	QC Batch
Calculated Parameters					
1,3-Dichloropropene (cis+trans)	ug/L	ND	ND	0.50	3576564
Volatile Organics					
Acetone (2-Propanone)	ug/L	ND	ND	10	3578787
Benzene	ug/L	ND	ND	0.20	3578787
Bromodichloromethane	ug/L	ND	ND	0.50	3578787
Bromoform	ug/L	ND	ND	1.0	3578787
Bromomethane	ug/L	ND	ND	0.50	3578787
Carbon Tetrachloride	ug/L	ND	ND	0.20	3578787
Chlorobenzene	ug/L	ND	ND	0.20	3578787
Chloroform	ug/L	ND	ND	0.20	3578787
Dibromochloromethane	ug/L	ND	ND	0.50	3578787
1,2-Dichlorobenzene	ug/L	ND	ND	0.50	3578787
1,3-Dichlorobenzene	ug/L	ND	ND	0.50	3578787
1,4-Dichlorobenzene	ug/L	ND	ND	0.50	3578787
Dichlorodifluoromethane (FREON 12)	ug/L	ND	ND	1.0	3578787
1,1-Dichloroethane	ug/L	ND	ND	0.20	3578787
1,2-Dichloroethane	ug/L	ND	ND	0.50	3578787
1,1-Dichloroethylene	ug/L	ND	ND	0.20	3578787
cis-1,2-Dichloroethylene	ug/L	ND	ND	0.50	3578787
trans-1,2-Dichloroethylene	ug/L	ND	ND	0.50	3578787
1,2-Dichloropropane	ug/L	ND	ND	0.20	3578787
cis-1,3-Dichloropropene	ug/L	ND	ND	0.30	3578787
trans-1,3-Dichloropropene	ug/L	ND	ND	0.40	3578787
Ethylbenzene	ug/L	ND	ND	0.20	3578787
Ethylene Dibromide	ug/L	ND	ND	0.20	3578787
Hexane	ug/L	ND	ND	1.0	3578787
Methylene Chloride(Dichloromethane)	ug/L	ND	ND	2.0	3578787
Methyl Isobutyl Ketone	ug/L	ND	ND	5.0	3578787
Methyl Ethyl Ketone (2-Butanone)	ug/L	ND	ND	10	3578787
Methyl t-butyl ether (MTBE)	ug/L	ND	ND	0.50	3578787
Styrene	ug/L	ND	ND	0.50	3578787
1,1,1,2-Tetrachloroethane	ug/L	ND	ND	0.50	3578787
1,1,2,2-Tetrachloroethane	ug/L	ND	ND	0.50	3578787

ND = Not detected RDL = Reportable Detection Limit QC Batch = Quality Control Batch

MMM Group Limited Client Project #: 3277670 Site Location: YONGE SUBWAY EXTENSION Your P.O. #: 3277670-000-800-094

VOLATILE ORGANICS BY GC/MS (WATER)

Maxxam ID		VO6877	VO6878					
Sampling Date		2014/04/16 16:10	2014/04/16 15:00					
	Units	MW5	MW4	RDL	QC Batch			
Tetrachloroethylene	ug/L	ND	ND	0.20	3578787			
Toluene	ug/L	ND	ND	0.20	3578787			
1,1,1-Trichloroethane	ug/L	ND	ND	0.20	3578787			
1,1,2-Trichloroethane	ug/L	ND	ND	0.50	3578787			
Trichloroethylene	ug/L	ND	ND	0.20	3578787			
Vinyl Chloride	ug/L	ND	ND	0.20	3578787			
p+m-Xylene	ug/L	ND	ND	0.20	3578787			
o-Xylene	ug/L	ND	ND	0.20	3578787			
Xylene (Total)	ug/L	ND	ND	0.20	3578787			
Trichlorofluoromethane (FREON 11)	ug/L	ND	ND	0.50	3578787			
Surrogate Recovery (%)								
4-Bromofluorobenzene	%	100	98		3578787			
D4-1,2-Dichloroethane	%	104	107		3578787			
D8-Toluene	%	96	95		3578787			

MMM Group Limited Client Project #: 3277670 Site Location: YONGE SUBWAY EXTENSION Your P.O. #: 3277670-000-800-094

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		VO6877	VO6878						
Sampling Date		2014/04/16 16:10	2014/04/16 15:00						
	Units	MW5	MW4	RDL	QC Batch				
BTEX & F1 Hydrocarbons									
F1 (C6-C10)	ug/L	ND	ND	25	3580407				
F1 (C6-C10) - BTEX	ug/L	ND	ND	25	3580407				
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/L	ND	ND	100	3577450				
F3 (C16-C34 Hydrocarbons)	ug/L	ND	ND	200	3577450				
F4 (C34-C50 Hydrocarbons)	ug/L	ND	ND	200	3577450				
Reached Baseline at C50	ug/L	YES	YES		3577450				
Surrogate Recovery (%)									
1,4-Difluorobenzene	%	99	101		3580407				
4-Bromofluorobenzene	%	97	96		3580407				
D10-Ethylbenzene	%	116	113		3580407				
D4-1,2-Dichloroethane	%	97	98		3580407				
o-Terphenyl	%	98	96		3577450				

ND = Not detected RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Page 6 of 13

MMM Group Limited Client Project #: 3277670 Site Location: YONGE SUBWAY EXTENSION Your P.O. #: 3277670-000-800-094

Test Summary

Maxxam ID VO6877 Sample ID MW5 Matrix Water Collected 2014/04/16 Shipped Received 2014/04/17

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	3576564	N/A	2014/04/24	Automated Statchk
Chloride by Automated Colourimetry	AC	3578324	N/A	2014/04/22	Alina Dobreanu
Chromium (VI) in Water	IC	3576804	N/A	2014/04/17	Lang Le
Free (WAD) Cyanide	TECH/CN	3579604	N/A	2014/04/22	Xuanhong Qiu
Petroleum Hydro. CCME F1 & BTEX in Wat	HSGC/MSFD	3580407	N/A	2014/04/23	Haibin Wu
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	3577450	2014/04/17	2014/04/21	Biljana Lazovic
Lab Filtered Metals by ICPMS	ICP/MS	3579733	2014/04/22	2014/04/22	John Bowman
Volatile Organic Compounds in Water	GC/MS	3578787	N/A	2014/04/23	Karen Hughes

Maxxam ID VO6878 Sample ID MW4 Matrix Water Collected 2014/04/16 Shipped Received 2014/04/17

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	3576564	N/A	2014/04/24	Automated Statchk
Chloride by Automated Colourimetry	AC	3578324	N/A	2014/04/22	Alina Dobreanu
Chromium (VI) in Water	IC	3576804	N/A	2014/04/17	Lang Le
Free (WAD) Cyanide	TECH/CN	3579604	N/A	2014/04/22	Xuanhong Qiu
Petroleum Hydro. CCME F1 & BTEX in Wat	HSGC/MSFD	3580407	N/A	2014/04/23	Haibin Wu
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	3577450	2014/04/17	2014/04/21	Biljana Lazovic
Lab Filtered Metals by ICPMS	ICP/MS	3579733	2014/04/22	2014/04/22	John Bowman
Volatile Organic Compounds in Water	GC/MS	3578787	N/A	2014/04/23	Karen Hughes

MMM Group Limited Client Project #: 3277670 Site Location: YONGE SUBWAY EXTENSION Your P.O. #: 3277670-000-800-094

GENERAL COMMENTS

Sample VO6877-01: F2-F4 Analysis:Sample was decanted prior to analyses according to client request.

MMM Group Limited Client Project #: 3277670 Site Location: YONGE SUBWAY EXTENSION Your P.O. #: 3277670-000-800-094

QUALITY ASSURANCE REPORT

			Matrix S	Spike	Spiked	Blank	Method Blar	۱k	R	PD
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
3576804	Chromium (VI)	2014/04/17	102	80 - 120	104	80 - 120	ND, RDL=0.50	ug/L	NC	20
3577450	o-Terphenyl	2014/04/21	99	60 - 130	98	60 - 130	94	%		
3577450	F2 (C10-C16 Hydrocarbons)	2014/04/21	105	50 - 130	108	60 - 130	ND, RDL=100	ug/L	NC	30
3577450	F3 (C16-C34 Hydrocarbons)	2014/04/21	94	50 - 130	102	60 - 130	ND, RDL=200	ug/L	NC	30
3577450	F4 (C34-C50 Hydrocarbons)	2014/04/21	83	50 - 130	100	60 - 130	ND, RDL=200	ug/L	NC	30
3578324	Dissolved Chloride (CI)	2014/04/22	NC	80 - 120	101	80 - 120	ND, RDL=1	mg/L	0.6	20
3578787	4-Bromofluorobenzene	2014/04/23	102	70 - 130	102	70 - 130	99	%		
3578787	D4-1,2-Dichloroethane	2014/04/23	105	70 - 130	105	70 - 130	103	%		
3578787	D8-Toluene	2014/04/23	98	70 - 130	99	70 - 130	96	%		
3578787	Acetone (2-Propanone)	2014/04/23	107	60 - 140	97	60 - 140	ND, RDL=10	ug/L		
3578787	Benzene	2014/04/23	100	70 - 130	101	70 - 130	ND, RDL=0.20	ug/L	NC	30
3578787	Bromodichloromethane	2014/04/23	102	70 - 130	104	70 - 130	ND, RDL=0.50	ug/L		
3578787	Bromoform	2014/04/23	104	70 - 130	104	70 - 130	ND, RDL=1.0	ug/L		
3578787	Bromomethane	2014/04/23	106	60 - 140	108	60 - 140	ND, RDL=0.50	ug/L		
3578787	Carbon Tetrachloride	2014/04/23	102	70 - 130	105	70 - 130	ND, RDL=0.20	ug/L		
3578787	Chlorobenzene	2014/04/23	100	70 - 130	102	70 - 130	ND, RDL=0.20	ug/L		
3578787	Chloroform	2014/04/23	100	70 - 130	103	70 - 130	ND, RDL=0.20	ug/L		
3578787	Dibromochloromethane	2014/04/23	107	70 - 130	108	70 - 130	ND, RDL=0.50	ug/L		
3578787	1,2-Dichlorobenzene	2014/04/23	97	70 - 130	100	70 - 130	ND, RDL=0.50	ug/L		
3578787	1,3-Dichlorobenzene	2014/04/23	94	70 - 130	97	70 - 130	ND, RDL=0.50	ug/L		
3578787	1,4-Dichlorobenzene	2014/04/23	93	70 - 130	96	70 - 130	ND, RDL=0.50	ug/L		
3578787	Dichlorodifluoromethane (FREON 12)	2014/04/23	97	60 - 140	99	60 - 140	ND, RDL=1.0	ug/L		
3578787	1,1-Dichloroethane	2014/04/23	102	70 - 130	104	70 - 130	ND, RDL=0.20	ug/L		
3578787	1,2-Dichloroethane	2014/04/23	104	70 - 130	106	70 - 130	ND, RDL=0.50	ug/L		
3578787	1,1-Dichloroethylene	2014/04/23	107	70 - 130	110	70 - 130	ND, RDL=0.20	ug/L		
3578787	cis-1,2-Dichloroethylene	2014/04/23	97	70 - 130	98	70 - 130	ND, RDL=0.50	ug/L		
3578787	trans-1,2-Dichloroethylene	2014/04/23	97	70 - 130	99	70 - 130	ND, RDL=0.50	ug/L		
3578787	1,2-Dichloropropane	2014/04/23	99	70 - 130	101	70 - 130	ND, RDL=0.20	ug/L		
3578787	cis-1,3-Dichloropropene	2014/04/23	100	70 - 130	101	70 - 130	ND, RDL=0.30	ug/L		
3578787	trans-1,3-Dichloropropene	2014/04/23	105	70 - 130	105	70 - 130	ND, RDL=0.40	ug/L		
3578787	Ethylbenzene	2014/04/23	93	70 - 130	94	70 - 130	ND, RDL=0.20	ug/L	NC	30
3578787	Ethylene Dibromide	2014/04/23	106	70 - 130	106	70 - 130	ND, RDL=0.20	ug/L		
3578787	Hexane	2014/04/23	94	70 - 130	97	70 - 130	ND, RDL=1.0	ug/L		
3578787	MethyleneChloride(Dichloromethane)	2014/04/23	107	70 - 130	108	70 - 130	ND, RDL=2.0	ug/L		
3578787	Methyl Isobutyl Ketone	2014/04/23	102	70 - 130	100	70 - 130	ND, RDL=5.0	ug/L		
3578787	Methyl Ethyl Ketone (2-Butanone)	2014/04/23	115	60 - 140	109	60 - 140	ND, RDL=10	ug/L		
3578787	Methyl t-butyl ether (MTBE)	2014/04/23	98	70 - 130	98	70 - 130	ND, RDL=0.50	ug/L	NC	30
3578787	Styrene	2014/04/23	97	70 - 130	101	70 - 130	ND, RDL=0.50	ug/L		
3578787	1,1,1,2-Tetrachloroethane	2014/04/23	104	70 - 130	105	70 - 130	ND, RDL=0.50	ug/L		

MMM Group Limited Client Project #: 3277670 Site Location: YONGE SUBWAY EXTENSION Your P.O. #: 3277670-000-800-094

QUALITY ASSURANCE REPORT

			Matrix S	Spike	Spiked	Blank	Method Blar	ık	RPD		
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	
3578787	1,1,2,2-Tetrachloroethane	2014/04/23	102	70 - 130	103	70 - 130	ND, RDL=0.50	ug/L			
3578787	Tetrachloroethylene	2014/04/23	109	70 - 130	110	70 - 130	ND, RDL=0.20	ug/L			
3578787	Toluene	2014/04/23	96	70 - 130	99	70 - 130	ND, RDL=0.20	ug/L	NC	30	
3578787	1,1,1-Trichloroethane	2014/04/23	99	70 - 130	102	70 - 130	ND, RDL=0.20	ug/L			
3578787	1,1,2-Trichloroethane	2014/04/23	100	70 - 130	99	70 - 130	ND, RDL=0.50	ug/L			
3578787	Trichloroethylene	2014/04/23	103	70 - 130	105	70 - 130	ND, RDL=0.20	ug/L			
3578787	Vinyl Chloride	2014/04/23	100	70 - 130	102	70 - 130	ND, RDL=0.20	ug/L			
3578787	p+m-Xylene	2014/04/23	92	70 - 130	95	70 - 130	ND, RDL=0.20	ug/L	NC	30	
3578787	o-Xylene	2014/04/23	93	70 - 130	96	70 - 130	ND, RDL=0.20	ug/L	NC	30	
3578787	Trichlorofluoromethane (FREON 11)	2014/04/23	105	70 - 130	108	70 - 130	ND, RDL=0.50	ug/L			
3578787	Xylene (Total)	2014/04/23					ND, RDL=0.20	ug/L	NC	30	
3579604	Free Cyanide	2014/04/22	111	80 - 120	109	80 - 120	ND, RDL=2	ug/L	NC	20	
3579733	Dissolved Antimony (Sb)	2014/04/22	111	80 - 120	107	80 - 120	ND, RDL=0.50	ug/L			
3579733	Dissolved Arsenic (As)	2014/04/22	113	80 - 120	107	80 - 120	ND, RDL=1.0	ug/L			
3579733	Dissolved Barium (Ba)	2014/04/22	108	80 - 120	106	80 - 120	ND, RDL=2.0	ug/L			
3579733	Dissolved Beryllium (Be)	2014/04/22	112	80 - 120	108	80 - 120	ND, RDL=0.50	ug/L			
3579733	Dissolved Boron (B)	2014/04/22	115	80 - 120	112	80 - 120	ND, RDL=10	ug/L			
3579733	Dissolved Cadmium (Cd)	2014/04/22	110	80 - 120	107	80 - 120	ND, RDL=0.10	ug/L			
3579733	Dissolved Chromium (Cr)	2014/04/22	113	80 - 120	107	80 - 120	ND, RDL=5.0	ug/L			
3579733	Dissolved Cobalt (Co)	2014/04/22	110	80 - 120	105	80 - 120	ND, RDL=0.50	ug/L			
3579733	Dissolved Copper (Cu)	2014/04/22	107	80 - 120	104	80 - 120	ND, RDL=1.0	ug/L			
3579733	Dissolved Lead (Pb)	2014/04/22	107	80 - 120	104	80 - 120	ND, RDL=0.50	ug/L			
3579733	Dissolved Molybdenum (Mo)	2014/04/22	110	80 - 120	105	80 - 120	ND, RDL=0.50	ug/L			
3579733	Dissolved Nickel (Ni)	2014/04/22	109	80 - 120	105	80 - 120	ND, RDL=1.0	ug/L			
3579733	Dissolved Selenium (Se)	2014/04/22	112	80 - 120	106	80 - 120	ND, RDL=2.0	ug/L			
3579733	Dissolved Silver (Ag)	2014/04/22	106	80 - 120	102	80 - 120	ND, RDL=0.10	ug/L			
3579733	Dissolved Sodium (Na)	2014/04/22	110	80 - 120	109	80 - 120	ND, RDL=100	ug/L	1.4	20	
3579733	Dissolved Thallium (TI)	2014/04/22	111	80 - 120	107	80 - 120	ND, RDL=0.050	ug/L			
3579733	Dissolved Uranium (U)	2014/04/22	111	80 - 120	106	80 - 120	ND, RDL=0.10	ug/L			
3579733	Dissolved Vanadium (V)	2014/04/22	110	80 - 120	105	80 - 120	ND, RDL=0.50	ug/L			
3579733	Dissolved Zinc (Zn)	2014/04/22	107	80 - 120	104	80 - 120	ND, RDL=5.0	ug/L			
3580407	1,4-Difluorobenzene	2014/04/23	101	70 - 130	100	70 - 130	100	%			
3580407	4-Bromofluorobenzene	2014/04/23	99	70 - 130	101	70 - 130	98	%			
3580407	D10-Ethylbenzene	2014/04/23	103	70 - 130	99	70 - 130	111	%			
3580407	D4-1,2-Dichloroethane	2014/04/23	98	70 - 130	100	70 - 130	101	%			

MMM Group Limited Client Project #: 3277670 Site Location: YONGE SUBWAY EXTENSION Your P.O. #: 3277670-000-800-094

QUALITY ASSURANCE REPORT

		Matrix S	Spike	Spiked I	Blank	Method Blan	k	RPD		
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
3580407	F1 (C6-C10)	2014/04/23	75	70 - 130	87	70 - 130	ND, RDL=25	ug/L	NC	30
3580407	F1 (C6-C10) - BTEX	2014/04/23					ND, RDL=25	ug/L	NC	30

N/A = Not Applicable

RDL = Reportable Detection Limit

RPD = Relative Percent Difference

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was not sufficiently significant to permit a reliable recovery calculation.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

Page 11 of 13

Validation Signature Page

Maxxam Job #: B461969

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Carriere

Cristina Carriere, Scientific Services

Eve Ristonation

Ewa Pranjic, M.S., C.Chem, Scientific Specialist

n. Risheld

Medhat Riskallah, Manager, Hydrocarbon Department

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

	INVO	ICE INFORMATION:			REPORT I	FORMATION	l(if differs	from invoi	ice):				PROJECT IN	FORMATION:			Laborato	Page 'o
any Name	#8866 MMM (Group Limited		Company Na	me: <u>MM</u> /	U Gro	NA				Quotation	ŧ:	A72109				Maxxam Job #:	Bottle Order #
ct Name:	Natalia Codoba	an		Contact Nam		nRahn	nall	as/N	atalia	ado	60 P.O. #	3	277670	-000-80	00-00	14		
S:	2655 North She	eridan Way Suite 280		Address:	2655	North	sh	eida	1 m	ay	Project #:		3277670					466938
	Mississauga O				Missi	ssaug	120	N		5	Project Na	me:	Vange	sybua	Exite	nsign	Chain of Custody #:	Project Manage
	(905) 823-4988) 823-8503 x	Phone:	905-8	23852	Da	Fax 005	-82	37.66	Site #:			0				
	CodobanN@m	mm.ca, edd@mmm.ca		Email:	Codoba	nom	mm.	G/rah	manian	sam	MM Sampled E	y:	S.R.				C#466938-01-01	Jolanta Goralczy
Re	gulation 153 (2011)	01	ther Regulations		Special Instru	tions	1.00			A	VALYSIS REQU	ESTED (PI	ease be specifi	:):			Turnaround Time (TAT) Required:
	Res/Park The Ind/Comm Cc Agri/Other Fc	edium/Fine CCME Reg 558. MISA PWQO Other	Sanitary Sev Storm Sewer Municipality				Regulated Drinking Water ? (Y N)	1 8	O.Reg 153 Petroleum R-F9 Hydrocarbons (Water)	Volatile Organics				-Apr-14 0 pralczyk	8:00	(will be a Standard Please n	Please provide advance r (Standard) TAT: applied if Rush TAT is not specified) d TAT = 5-7 Working days for most inde: Standard TAT for certain tests onlact your Project Manager for deta): tests. such as BOD and Dioxins/Furans a
	Incl	lude Criteria on Certificate of A	Analysis (Y/N)?				nking V iltered	Viet	Pet ns (Vola			B461969				cific Rush TAT (if applies to entir	
1	lote: For MOE regulat	ted drinking water samples - pl	lease use the Drink	ing Water Chain	of Custody Form		Dri	53 1	53 rbor	53 \					710	Date Rec		Time Required:
	and second and an and second and	KEPT COOL (< 10°C) FROM T	anan mara ma				ated	g 1 Wtr	g 1	O.Reg 153 \ (Water)		Ν	/IAF	ENV	-/13	Rush Cor	nfirmation Number:	(call lab for #)
				ONTIL DELIVER	T TO MAXXAM		Regulat Metals	Re (g (/dro	Vate	1		1 1		-	# of		
Sampl	e Barcode Label	Sample (Location) Identifi	cation D	ate Sampled	Time Sampled	Matrix	R N	OL	OÍ	SO						Bottles		Comments
		MW 5	la	61 Apr	4:10	ivate	r	V	V	V						Kiz	please don Murcury	ist analyze
		MW5 MW4	1	61AP1	4:10 3:00	wete	(V	V	V				1		Ka	Please don Murcury Please Filte changing VI	er & preserve
24			1.1															metals
															-			
												_						
	·																*	
		Υ.			а													
									$\langle \cdot \rangle$									All S. I
		a and he and a line in			- 2			÷							1			
						*								2			1	A A A A A A A A A A A A A A A A A A A
A		Sim store (Drint)	Determon											-				. X
1	RELINQUISHED BY: (10	Date: (YY/MM/					Signature/P	rint)		Date: (YY		Time:	# jars used a not submitte	d		Laboratory Use	
1.	Kohnen	lan	14/04/16	5 8pm	1 MAD	AUKIA	L DK	TOBL	11.		Leichou	117	08:00		Time	Sensitive	Temperature (°C) on Receip	CustodySeal Yes Present

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

INVO	DICE INFORMATION:			REPORT I	FORMATION	(if differs	from invoi	ce):				PROJ	ECT INFO	ORMATION:		Laboratory	Use Only:	
any Name: t Name: ss: #8866 MMM Natalia Codob 2655 North Sh			Company Nam Contact Name: Address;	as (Ne	etalia	add	Quota	ion #:	32 77 327	7670	-000-800		Maxxam Job #:	Bottle Order #				
Mississauga C (905) 823-498 CodobanN@n) 823-8503 x	Phone: Email:	Sava 2655 Missi 905-8 Codoba	55 aug 23850 MADM	nn-1	axops	82; manian	3266 500 mil	Projec	: Name: ed Bv:	5.6		subway	Extensia	Chain of Custody #:	Project Manage Jolanta Goralczy	
Regulation 153 (2011)	0	ther Regulations		Special Instruc					AN		QUESTED					Turnaround Time (TAT) Re	equired:	
		*				ng Water ? (Y N)	O.Reg 153 Metals & Inorganics Pkg (Wtr)	troleum R-P4 (Water) B725	Volatile Organics			Jolant		Apr-14 08: ralczyk	(will be Standa Please days -	Please provide advance notice for rush projects Regular (Standard) TAT: (wil be applied if Rush TAT is not specified): Standard TAT = 5-7 Working days for most tests. Please note: Standard TAT for certain tests such as BOD and Dioxins/Furans. Jays - contact your Project Manager for details.		
	clude Criteria on Certificate of A					Drinki d Filte	3 Me	3 Pe	Nol		ľ	B46	1969			ecific Rush TAT (if applies to entire su equired:	Ibmission) Time Required:	
SAMPLES MUST BE	nted drinking water samples - p : KEPT COOL (< 10°C) FROM 1	TIME OF SAMPLING UN	TIL DELIVERY	TO MAXXAM		Regulated D Metals Field	Reg 153 (g (Wtr)	O.Reg 153 Petroleum Hydrocarbons (Water)	O.Reg 153 (Water)			MAF		ENV-7		onfirmation Number:	call lab for #)	
Sample Barcode Label	Sample (Location) Identifi			Time Sampled	Matrix	Re M	01	OÍ	SO	<u> </u>					Bottles	Comm	nents	
	MWS	1.61	Apr	3:00	wate.		V	\checkmark	V						ta ta	Murcury Murcury	f avangee	
	mwy	16,	AP1	3:00	wete		V	V	V						Ka	Please dono Muncury Please Filter chromium VIE	2 preserve Disolved	
× *													_				metals	
	v						-											
	3							\sum			1							
	· · · · · · · · · · · · ·			2														
														-				
Λ												-				•	×.	
*RELINQUISHED BY:	(Signature/Print)	Date: (YY/MM/DD)					ignature/P	rint)			(YY/MM/DD		me:	# jars used and not submitted		Laboratory Use Onl	· · · · · · · · · · · · · · · · · · ·	
1. Komer	ian	14/04/16	8pm	NOO	AUKIA	DW	HR.			Lokel	04/17	08:	: 00	not supmitted	Time Sensitive	Temperature (°C) on Receipt	CustodySeal Yes Present Intact	

APPENDIX D – STANDARD LIMITATIONS

STANDARD LIMITATIONS ENVIRONMENTAL INVESTIGATIONS and CHARACTERIZATION PROGRAMS

These Standard Limitations form part of the Report to which they are appended and any use of the Report is subject to them.

1. EXCLUSIVE USE BY CLIENT

This Report was prepared for the exclusive use of the client identified as the intended recipient. Any use of the Report by any other party without the written consent of MMM Group Limited is the sole responsibility of such party. MMM Group Limited accepts no responsibility for damages that may be suffered by any third party as a result of decisions made or actions taken based on the Report.

2. SCOPE, TERMS AND CONDITIONS OF CONTRACT

The observations and investigations (hereinafter referred to as the "Work") upon which this Report is based were carried out in accordance with the scope, terms and conditions of the contract or the proposal which the Work pursuant to was commissioned. The conclusions presented in the Report are based solely upon the scope of services described in the contract or the proposal and governed by the time and budgetary constraints imposed by them.

3. STANDARD OF CARE

The principles, procedures and standards relevant to the nature of the services performed are not universally the same. The Work has been carried out in accordance with generally accepted environmental study and/or professional practices, industry standards and environmental regulations, where applicable. No other warranties are either expressed or implied with respect to the professional services provided under the terms of the contract or the proposal and represented in this Report.

4. SCOPE OF THE WORK

This Report may be based in part on information obtained at discrete sampling and/or monitoring locations. The conditions reported herein were those encountered at the subject property at the time the Work was performed and as present at the discrete sampling/monitoring locations, if any. Conditions between sampling/monitoring locations may be different than those encountered at the sampling/monitoring locations and MMM Group Limited is not responsible for such differences.

5. REASONABLE CONCLUSIONS

The conclusions contained in this Report are based on the Work and may also consider a review of information from other sources as identified in the Report. The accuracy of information from other sources was not verified unless specifically noted in the Report, nor was it determined if the reviewed information constituted all information that exists and pertains to the subject property.

The conclusions made are based on reasonable and professional interpretation of the information considered. If additional information concerning conditions of relevance to this Report is obtained during future work at the subject property, MMM Group Limited should be notified in order that we may determine if modifications to the conclusions presented in this Report are necessary.

6. REPORT AS A COMPLETE DOCUMENT

This Report must be read as a whole and sections taken out of context may be misleading. If discrepancies occur between the preliminary (draft) and final versions of the Report, the final version of the report shall take precedence.

7. LIMITS OF LIABILITY

MMM Group Limited's liability with respect to the Work is limited to re-performing, without cost, any part of the Work that is unacceptable solely as a result of failure to comply with industry standards. MMM Group Limited's maximum liability is limited in accordance with terms in the original contract, provided that notice of claim is made within regulated timelines as of the date of delivery of the Report.

