Golder Associates Ltd.

2390 Argentia Road Mississauga, Ontario, Canada L5N 5Z7 Telephone: (905) 567-4444 Fax: (905) 567-6561

REPORT ON

GEOTECHNICAL / HYDROGEOLOGICAL ASSESSMENT YORK RAPID TRANSIT PLAN VAUGHAN NORTH-SOUTH SUBWAY LINK ENVIRONMENTAL ASSESSMENT REGIONAL MUNICIPALITY OF YORK, ONTARIO

Submitted to:

York Consortium 2002 1 West Pearce Street, 6th Floor Richmond Hill, Ontario L4B 3K3

DISTRIBUTION:

- 3 Copies York Consortium 2002, Richmond Hill, Ontario
- 2 Copies Golder Associates Ltd., Mississauga, Ontario

January 2007

R.O.B. Best companies to work for in canada 06-1111-040

SECTION

PAGE

1.0	INTRODUCTION1								
2.0	PROJE	ECT AN	D SITE DESCRIPTION	2					
3.0	SITE C	SITE GEOLOGY AND SUBSURFACE CONDITIONS							
	3.1	Regior	nal Geology	3					
		3.1.1	Paleozoic Bedrock						
		3.1.2	"Lower Drift"	3					
		3.1.3	Newmarket Till	4					
		3.1.4	Oak Ridges Moraine Complex	4					
		3.1.5	Halton Till	5					
		3.1.6	Upper Deposits	5					
	3.2								
	3.3	Subsu	face Conditions Along the Proposed Alignment	6					
4.0			LOGY						
5.0	MAN-		FEATURES SIGNIFICANT TO DESIGN AND CONSTRUCTION						
	5.1	Adjace	ent Properties and Structures	.12					
6.0	INFLU	JENCE (OF SUBSURFACE CONDITIONS ON DESIGN AND						
			ION						
7.0	RECO	MMENI	DATIONS FOR DESIGN	15					
	7.1	Cut-an	d-Cover Construction	. 15					
		7.1.1	Subway Structure Design Aspects	. 15					
		7.1.2	Excavations	.17					
	7.2	Tunne	lling Methods	.18					
	7.3	Dewat	ering	. 20					
8.0	LIMIT	ATION	S AND USE OF REPORT	. 22					
9.0	CLOS	URE		. 23					

In Order Following Page 23

Important Information and Limitations of this Report Drawings 1 to 3 Appendices A and B

- i -

LIST OF DRAWINGS

Drawing 1	Borehole Location Plan
Drawing 2	Interpreted Subsurface Profile Along Proposed Subway Alignment
Drawing 3	Grain Size Distribution Envelope – Upper Sand/Silt (North)

LIST OF APPENDICES

- Appendix A Geotechnical Investigation Report by Golder Associates Ltd.
- Appendix B Previous Borehole Records (Boreholes 1 to 12 1981 by Golder Associates Ltd.; Boreholes 104 to 109 1985; and Boreholes 06-2 and 06-5 2006 by Others)

1.0 INTRODUCTION

Golder Associates Ltd. ("Golder") was retained by the York Consortium 2002 (the "Consortium"), on behalf of York Region Transit ("York Transit"), to assist in the completion of a geotechnical and hydrogeological assessment for the proposed subway connection between the York Rapid Transit system along Highway 7 and the future Spadina Subway Extension. At the time this report was prepared, planning for the Spadina Subway Extension included a terminal station near the north edge of the York University campus at Steeles Avenue in Toronto, Ontario. This report has been prepared as part of the requirement for the final Environmental Assessment that is to be submitted for this proposed Vaughan North-South Subway Link.

This report supplements an earlier report submitted to the Region of York in August 2005, in which the York Rapid Transit Plan defined several potential transit corridors within York Region for alleviation of traffic congestion including two major corridors: Yonge Street and Highway 7. Several potential Highway 7 transitway route options have also been identified in earlier study stages and *Route Alternative B1* was identified as a preferred subway alignment to connect the future Steeles Subway Station on the proposed Spadina Subway Extension (located at York University/Steeles Avenue) to the Vaughan Centre, near Highway 7/Jane Street.

The purpose of this report is to provide preliminary geotechnical information on the subsurface conditions (soil and groundwater) along the proposed subway alignment, preliminary hydrogeological assessment of potential construction dewatering that may take place at or near one of the proposed subway station locations, and recommendations and comments on the geotechnical aspects of design and construction of the works. Preliminary soil design parameters are provided, together with discussion and comments on relevant design and construction aspects such as excavations, method of ground support and backfilling.

2.0 PROJECT AND SITE DESCRIPTION

The location of the project is illustrated on Drawing 1. The subway alignment is proposed to run from the future Steeles Subway Station on the Spadina Subway Extension, extend northwest across Steeles Avenue, then turn north to run along the west side of Jane Street, cross beneath Black Creek and Highway 407, and terminate near the intersection of Highway 7 and Millway Avenue. The proposed subway will run parallel to Jane Street for most of the alignment.

Two underground subway stations have been proposed for the alignment at the following locations:

- Approximately 100 m west of Jane Street between Highway 407 and its west-south exit ramp onto Jane Street; and
- Approximately 225 m west of Jane Street at the intersection of Highway 7 and Millway Avenue.

3.0 SITE GEOLOGY AND SUBSURFACE CONDITIONS

3.1 Regional Geology

The Quaternary-age deposits of York Region consist predominantly of glacial till, glaciolacustrine sand, silt, and clay deposits, and shallow post-glacial lacustrine sediments. These deposits were laid down by glacial ice sheets and associated rivers and lakes. Recent deposits of alluvium are found in the river and stream valleys and their flood plains. Typically, bedrock is expected to be below a significant thickness of the sedimentary overburden (depths greater than 30 m).

The Quaternary soil deposits overlying the bedrock in the study area are believed to have been deposited over the course of two glaciations and one interglacial (i.e. warmer) stage. The oldest soil deposits identified in the Greater Toronto Area are the Illinoian tills that immediately overlie bedrock, where they are present. These tills are overlain by interglacial lacustrine sands, silts, and clays that are, in turn, overlain by the most recent glacial deposits.

3.1.1 Paleozoic Bedrock

The Paleozoic bedrock in the area consists primarily of the Georgian Bay Formation. This sedimentary rock formation includes shale, siltstone, sandstone and interbeds of limestone. Within the area of the planned project, it is expected that the bedrock will be at depths exceeding those necessary for foundations or excavations.

3.1.2 "Lower Drift"

The "Lower Drift" includes a series of deposits, interpreted by some as interbedded glacial tills and interglacial lacustrine (lake-deposited) sediments, and by others as interbedded lacustrine deltaic sediments that include diamict. Diamict sediments are characterized by inclusions of angular coarse sand and gravel within finer-grained soils (either silt and sand or silt and clay), producing units that, overall, can be poorly graded (a mix of different grain sizes). Glacial till, or sediments deposited at the contact between the overriding ice sheets and the underlying strata, are characteristically diamict units. Diamict can also be deposited in a near-ice lacustrine environment (with the coarse material "raining" into the sediments from the base of floating ice to the bottom of water bodies) rather than by glacial contact with the underlying sediments. This "Lower Drift" includes the following formations, from oldest to youngest:

- **Don Formation:** The Don Formation, where present, consists primarily of bedded silt and sand deposits that are in direct contact with the underlying bedrock formations.
- Scarborough Formation: The Scarborough Formation also consists primarily of bedded silt and sand deposits overlying the Don Formation, but these sediments were deposited at a later stage than the Don Formation.
- **Sunnybrook Formation:** The Sunnybrook Formation consists predominantly of finegrained sediments that appear locally as layered diamict, massive diamict or layered finegrained sediments more characteristic of lacustrine deposits. The composition and hard consistency of this material has resulted in this material being identified as a basal glacial till unit by some reference sources.
- **Thorncliffe Formation:** The Thorncliffe Formation consists primarily of granular sediments including varying proportions of silt and sand.

3.1.3 Newmarket Till

The Newmarket Till is a regional glacial till sheet generally characterised by its predominantly fine-grained composition. In most areas this glacial till is relatively hard and, due to its fine-grained composition, forms a regional aquitard (deposit inhibiting flow of groundwater). The Newmarket Till also contains cobbles and boulders. In some areas, "boulder pavements" can be encountered where boulders are nested or concentrated in a layer within the till unit or near the interfaces with other geologic deposits. Experience on other construction projects in this deposit suggests that boulders may typically form about 0.1 to 0.5 per cent of the total deposit volume, though in some areas, boulders can form up to 2 per cent of the total deposit volume.

3.1.4 Oak Ridges Moraine Complex

The Oak Ridges Moraine Complex (ORMC) is a well-known and important geologic feature within the region. It is believed that the moraine was formed between the Lake Simcoe and Lake Ontario lobes of regionally extensive glacial ice sheets. In most areas, the ORMC is composed primarily of fine sand, though there are also local deposits of coarse, stratified sand and gravel; these coarse deposits have historically been mined for construction uses. In most of the study area, the ORMC has been overridden by the Halton Till and, therefore, may be compact to very dense.

3.1.5 Halton Till

The Halton Till is generally considered a fine-grained diamicton with minor fine-grained lacustrine sediments incorporated within the body of the unit, likely from glacial reworking of underlying lacustrine sediments. The Halton Till is typically stiff to hard in consistency, though near the ground surface, weathering can result in it being degraded to consistencies ranging from soft to firm. The Halton Till also contains cobbles and boulders. In some areas, "boulder pavements" can be encountered where boulders are nested or concentrated in a layer within the till unit. Experience on other construction projects in this deposit suggests that boulders may typically form about 0.1 to 0.5 per cent of the total deposit volume, though in some areas, boulders can form up to 2 per cent of the total deposit volume.

3.1.6 Upper Deposits

Based on local experience, "Upper Deposits" generally include two types of materials: more recent natural post-glacial deposits; and deposits placed for construction or disposal of unwanted materials during development of the area.

- **Fill:** Fill generally consists of reworked native soil and/or rock materials, refuse, construction and demolition debris, and other assorted random materials placed during development of the area to level the ground in preparation for building or as a disposal site for unwanted materials. Typically, older fill materials were placed with little control over the materials or how they were placed.
- **Recent Alluvial Deposits:** In the areas of watercourses, erosion and redeposition of soil materials has occurred since the last glacial period. Geologically recent deposits from watercourses are typically soft or loose in consistency. Within the boundaries of the watercourse floodplains, the subsurface conditions can be expected to vary significantly as the alignment of the watercourse has likely shifted over time. The shifting positions of watercourses produces localized and in-filled meander channels and possible organic deposits (organic silt and clay or peat from the growth, burial, and decomposition of plant materials).
- **Recent Glaciolacustrine Deposits:** During the retreat of the last glacial ice sheet from the region, low areas in the surface topography became small water bodies (locally named the "Peel Ponds"). Sediments carried by surface water runoff and watercourses were deposited in these water bodies. In many areas, the sediments are characterized by alternating layers of soft to firm silt and clay resting on the underlying dense or hard glacial till, with overlying loose silt and sand deposits near the surface.

Recent Alluvium should be expected in all areas adjacent to the existing watercourse, regardless of the interpreted native deposit type. The extent of such deposits should be identified only on the basis of additional field exploration in areas that will be critical for pavement or transitway design.

3.2 Regional Groundwater Considerations

Several water-bearing deposits that consist predominantly of cohesionless soils (silt, sand, and gravel) are present within the study area. These include the following:

- Recent Glaciolacustrine Deposits where these deposits include granular soils;
- Oak Ridges Moraine Complex;
- Thorncliffe Formation; and
- Scarborough Formation.

Of these deposits, the Oak Ridges Moraine Complex and Thorncliffe Formation will be the primary groundwater aquifers (major water-bearing stratigraphic units) influencing the design and construction of the project. Although these units will be the largest continuous aquifers, the presence of layers of low-permeability materials (silt and clay) between granular soils will create areas of groundwater that are "perched" above the main aquifers. Each of the glacial till strata identified on the simplified geologic profile will act as an aquitard and groundwater should be expected above the interfaces of any of these till units and overlying granular soils.

3.3 Subsurface Conditions Along the Proposed Alignment

As part of the subsurface investigation for the Environmental Assessment of this proposed subway connection, three boreholes (Boreholes Y-140 to Y-142) were advanced near the two proposed subway stations along the alignment on the Vaughan North-South Subway Link. The borehole locations are shown on Drawing 1, and the results of the geotechnical investigations (including borehole records and laboratory test results) are included in Golder's Geotechnical Investigation Report that is provided in Appendix A. In addition to the three boreholes advanced in the autumn of 2006, geotechnical data from the following reports or information were compiled to assess the subsurface conditions along the proposed alignment:

- Borehole data for the Highway 7/Jane Street Intersection Subsidence by GeoTerre Limited, Project No. TG06-009, dated February 2006.
- "Addendum to Report on Geotechnical Investigation, Spadina Subway Extension, Environmental Assessment, City of Toronto" by Golder Associates Ltd., Project No. 04-1111-054, dated July 2006.
- "Report on Geotechnical Investigation, Spadina Subway Extension, Environmental Assessment, City of Toronto" by Golder Associates Ltd., Project No. 04-1111-054, dated January 2006.

- "Piezometer and Settlement Point Installations at Jane Street Sanitary Sewer, Town of Vaughan, Ontario" by Golder Associates Ltd., Project No. 861-1109, dated June 1986.
- "Geotechnical Services for Proposed Flood Control Structure and Pond at Jane Street and Highway 7, Town of Vaughan, Ontario" by Golder Associates Ltd., Project No. 861-1056, dated May 1986.
- "Geotechnical and Hydrogeological Investigation for Proposed Jane Street Sewer, Town of Vaughan" by Golder Associates Ltd., Project No. 851-1136, dated September 1985.
- "Geotechnical Investigation for Proposed Jane Street Sanitary Trunk Sewer, Town of Vaughan, Ontario" by Golder Associates Ltd., Project No. 811-1156, dated September 1981.

The stratigraphic boundaries shown on the borehole record are inferred from non-continuous sampling, observations of drilling progress and the results of Standard Penetration Tests and, therefore, represent transitions between soil types rather than exact planes of geological change. Subsoil conditions will vary between and beyond the borehole locations.

The soil types described on the Record of Borehole sheets, drawings and figures in this report are given twelve different classifications and graphic symbols (Types 1 through 12) consistent with the range of soil deposits anticipated to be encountered for subway construction in the Greater Toronto Area. The classification system that has been used is listed below:

- Fill (Type 1);
- Organics (Type 2);
- Gravel to Sand and Gravel (Types 3 and 4);
- Sand to Silty Sand (Types 5 and 6);
- Sandy Silt to Silt (Types 7 and 8);
- Clayey Silt to Clay (Types 9 and 10);
- Clayey Silt Till (Type 11); and
- Sandy Silt Till (Type 12).

The graphical representations of these material types are supplemented by colour to facilitate visualization of the geologic and material characteristics of the soil deposits. It is to be noted that Deposit Types 11 and 12 are interpreted as a till deposit (lodgement or basal till) on the basis of their heterogeneous structure, the relatively broad grain size distribution and the documented local geology.

In general, the area is underlain by two till sheets, considered to be substages of the Wisconsin glaciation. The till sheets are underlain and/or separated by variable thicknesses of interstadial deposits of sand, silt and silty clay of glaciofluvial and glaciolacustrine origin. Bedrock was not encountered in any of the boreholes.

Within this report, the naming convention includes "Upper" and "Middle", depending on the relative elevations and grain size characteristics of the deposits. This convention has been adopted to be consistent with work completed for the Sheppard Subway and Spadina Subway and is used to avoid geologic unit classifications based on geologic age or stage of glacial advance. In some instances, geologic nomenclature, although correct in defining the geologic origin and age of a particular deposit, does not necessarily convey indications of material type or potential engineering behaviour. Precedence in this report has therefore been given to naming the different soil units based on relative elevation and grain size composition.

In general, the stratigraphy along the proposed alignment is defined by two sheets of predominantly cohesive glacial till (Upper and Middle Till) encountered from near the ground surface to depths of approximately 30 m. Deposits of relatively uniform glaciolacustrine or glaciofluvial sand and silt (Upper Sand/Silt (North)) were encountered just below the Upper Till around the Highway 7 station with a thickness of about 9 m. A similar Upper Sand/Silt (South) was encountered at the southernmost part of the proposed subway extension in the area of Steeles Subway Station. There appears to be an area around the middle portion of the subway alignment, near Black Creek, its tributaries, and Highway 407, where the Upper Sand/Silt deposits may not exist. Instead the Upper and Middle Till appear to converge around that area and this will require further field exploration and testing.

Within all of the soil deposits there are smaller zones of compositionally different materials. For example, within the Upper Till, there can be found zones of uniform sand and silt, and within the Upper Sand/Silt, there are zones or layers of silty clay or clayey silt. During deposition, the base of the glacial ice sheets in this area overrode relatively weak glaciolacustrine and deltaic deposits of sand, silt, and clay. Thus, materials from these interstadial deposits became incorporated into the basal glacial till. The Upper Sand/Silt deposit encountered at the Highway 407 site is noted to be very close to the ground surface and any potential construction dewatering within this deposit may affect the Black Creek and its tributaries.

For final design, it will be necessary to complete more boreholes in the areas where such variation may be important for determining aquifer continuity characteristics for dewatering or groundwater cut-off.

It should be noted that the interpreted stratigraphy illustrated on Drawing 2 is a simplification of the subsurface conditions based on widely-spaced boreholes. Variation in the stratigraphic boundaries between boreholes will exist and are to be expected. The interpreted stratigraphy also

Golder Associates

does not necessarily represent a direct borehole-to-borehole linking of similar soil types. In some areas, borehole off-set distances (away from the centre-line interpretation), descriptions of soil types on the original boreholes, and overall geologic considerations suggests that a departure from individual sample descriptions on the borehole logs is appropriate for description of the overall geologic deposit. It should be expected that future investigation findings will result in refinements to the interpreted stratigraphy along the subway alignment.

4.0 HYDROGEOLOGY

The proposed alignment is located adjacent to Black Creek and passes beneath two tributaries that converge just north of the CN Rail tracks, west of Jane Street. Surface drainage of the study area is toward Black Creek via tributary streams. The hydrogeology of the glacial deposits in the area can be relatively complex. The lower-permeability glacial till deposits tend to impede groundwater flow, whereas the interstadial deposits of silt and sand serve as local shallow aquifers.

Details of the monitoring well installations and water level measurements are shown on the interpreted stratigraphic profile shown on Drawing 2. It should be expected that the groundwater level along the alignment will be subject to seasonal fluctuations, particularly during spring flows and precipitation events around Black Creek and its tributaries.

Though the Highway 407 Station is located in close proximity to Black Creek and two of its tributaries, distinct sand and silt deposits were not encountered at the investigation locations. Therefore, a full-scale dewatering test was not carried out as anticipated and, instead, rising head tests were carried out within the glacial till. Layers of coarse material within the zone of the sand-pack may have unduly influenced the test at this location. On the basis of the subsurface conditions encountered to date at the Highway 407 station, water-bearing deposits that would require extensive dewatering systems are not anticipated to be present.

In the Highway 7 Station vicinity, near Millway Avenue, several significant granular layers are present over the depth of the station excavation (Upper Sand/Silt). Based on the available information, it appears that this deposit may grade into coarse deposits of sand and gravel near the interface with the underlying cohesive glacial till. The overall characteristics of this deposit suggest a wide range of grain size distributions may be likely, as illustrated by Drawings 2 and 3. The recent sinkhole incident at the intersection of Highway 7 and Jane Street also indicates that a significant thickness of sand and silt exists at the location that may constrain the proposed station excavation and require that groundwater control be provided.

Between the proposed Steeles West and Highway 407 Stations and between the proposed Highway 407 and Highway 7 Stations, the Upper and Lower Till Deposits converge. For the tunnelled sections between these stations and for any supplementary structures (cross passages, emergency exit buildings, firefighter access buildings, etc.), the groundwater conditions in and around these convergence areas will require detailed investigation at specific design locations. Groundwater trapped in granular layers overlain by low permeability silt and clay soils can be under pressures such that any wells or excavations that puncture the granular layers could exhibit a pressure head elevation above the interface of the granular and low-permeability units and, in some cases, this pressure head may be higher than the ground surface resulting in "artesian" conditions (wells under such conditions will flow at the ground surface). Hydrostatic conditions

Golder Associates

(i.e., a single groundwater table) should not be assumed for any location along the alignment. Although artesian conditions were not encountered during the investigations for this report, they were encountered during investigations for the Jane Street sewer south of Highway 7, and may be encountered during future drilling or construction in the valley between Highway 7 and Steeles Avenue.

5.0 MAN-MADE FEATURES SIGNIFICANT TO DESIGN AND CONSTRUCTION

5.1 Adjacent Properties and Structures

The subway alignment is proposed to continue northward from the crossover tracks of the future Steeles Subway Station, under the existing CN Rail (Halton) tracks, towers in the hydro right-of-way, Black Creek and its two tributaries, and Highway 407, and will terminate near Highway 7. The tunnel will also pass under a "light maintenance" warehouse building, which belongs to Toromont CAT. It is understood from the Consortium that the affected company has indicated that this building can be demolished when the subway is being constructed.

In addition to the above structures, there are numerous utilities that will potentially be affected by the proposed construction; these are generally located within the Jane Street road allowance, just north of the CN Rail tracks and in the Highway 7 road allowance where the Highway 7 Station will be constructed.

6.0 INFLUENCE OF SUBSURFACE CONDITIONS ON DESIGN AND CONSTRUCTION

Fill, placed for past urban development activities, may be encountered throughout the proposed alignment, particularly in the immediate vicinity of the Black Creek tributaries, the rail line, Highway 407, and Highway 7. In general, the fill should be considered to be uncontrolled in both material and placement and should, therefore, be considered unsuitable for foundation support. In some areas, particularly the right-of-way at the existing Highways 7 and 407, some of the fill materials may have been placed in a more controlled manner for highway construction. However, the support capabilities of these materials, outside of the main roadways, should not be relied upon until detailed reviews of construction records are completed in further design stages.

The Upper Till Deposit (believed to be Halton Till) is likely to be the primary native deposit encountered along the proposed alignment. This deposit is relatively dense or hard and should be suitable for both foundation support and pavement subgrades, if necessary. Any permanent cut or fill slopes with slopes steeper than 3 horizontal to 1 vertical (3H:1V) and a height or depth greater than 3 m should be further evaluated during final design.

It is anticipated that running tunnel construction in this area could be accomplished using conventional cut-and-cover techniques in which a deep excavation to the proposed subgrade elevation is made. Based on the prevailing ground conditions, temporary cuts for open-cut construction may be made with side slopes in the range of 1H:1V to 1.5H:1V. It is expected, however, that in most instances, vertical excavation sides will be required, particularly in the Highway 7 Station area; these excavations will require temporary shoring. Shoring could consist of either soldier-piles and lagging or contiguous caisson (cast-in-place secant pile) walls, depending on the requirements for groundwater control and the need to limit ground movement adjacent to the shoring system.

The ground conditions along the proposed alignment are also considered to be favourable for machine-bored tunnelling, provided that groundwater is adequately controlled. Use of a tunnel boring machine (TBM) would be feasible and likely economically viable for tunnel lengths that are expected to be greater than 600 m. The TBMs used on the Sheppard Subway were designed as earth-pressure-balance (EPB) machines so as to assist in controlling ground displacements and groundwater levels, and also included both rock and soil cutting tools on the machine face to limit difficulties associated with encountering boulders.

The sequential excavation method, in which a number of short-length stages of mechanicallyassisted and unsupported excavation are followed immediately by steel ribs and shotcrete lining construction, may also be a suitable technique for relatively short sections of tunnel as may be required to initiate tunnelling work from launch shaft. It is generally recommended, however, that this technique not be considered where the tunnels will pass beneath the watercourses or in areas where extensive sand and silt deposits are identified.

Where the tunnels or cut-and-cover structures pass directly beneath or adjacent to existing structures or highways (e.g. Highway 407), additional ground control measures may be necessary. It is generally recommended that any tunnelling that is to be carried out beneath buildings or highways be at a depth that leaves a distance of at least twice the tunnel diameter between the crown of the tunnel and the underside of any building foundations. Detailed settlement evaluations should be completed for any areas where it is contemplated that tunnelling will be completed beneath or adjacent to structures, railways, or roadways.

The Upper Sand/Silt (believed to be Oak Ridges Moraine Complex) underlies the Upper Till in parts of this area, and groundwater pressures in this stratum may have to be controlled to facilitate construction. Groundwater lowering may require dewatering systems or cut-off wall technologies to limit the influence of groundwater on both the construction and the effects of groundwater lowering on the adjacent properties. The information compiled to date suggests that granular deposits that would require extensive dewatering are not in direct hydraulic connection with Black Creek and its tributaries.

Based on previous construction for Toronto subway projects, station excavations or dewatering may be accomplished using deep wells, eductor well systems or well-points installed from within the excavation. The influence of dewatering on settlement of the surrounding ground should be relatively minimal.

Based on the subsurface information gathered during the recent investigations, groundwater will have to be controlled for the Highway 7 Station. In the vicinity of the proposed station, the aquifers (saturated granular deposits) typically consist of fine sand and silt, and some gravelly sand to sand and gravel, particularly near the base of the Upper Sand/Silt (see Drawings 1 and 3)

The recent investigations suggest that the Upper Sand/Silt is not present in significant thicknesses in the vicinity of the Highway 407 Station, indicating that extensive dewatering may not be necessary in this area. It should be noted, however, that in the complex glacial environment, conditions may change significantly between boreholes. Prior to final design, the presence or absence of the Upper Sand/Silt in the vicinity of this station must be further investigated with a number of closely spaced boreholes around the perimeter of the planned excavation.

Golder Associates

7.0 RECOMMENDATIONS FOR DESIGN

This section of the report includes an interpretation of the geotechnical data with respect to design of geotechnical aspects of the works. It should be noted that the subsurface data is available at isolated borehole locations along the alignment. Conditions will vary between and beyond the boreholes and the design and construction must allow for reasonable variations.

7.1 Cut-and-Cover Construction

7.1.1 Subway Structure Design Aspects

7.1.1.1 Foundations

From the stratigraphic profile shown on Drawing 2, the typical founding soils for the two proposed subway station base slabs are summarized as follows:

Station	Estimated Elevation of Base Slab (m)*	Anticipated Founding Material	Soil Type		
Highway 407	173	Silty Clay Till; Silty Clay	11; 10		
Highway 7	183	Sand; Sand and Gravel; Silty Clay Till	5; 4; 11		

* Elevation of base slab is estimated from the subway vertical alignment profile provided by York Consortium in November 2006; this is to be reviewed as required with the final EA alignment.

7.1.1.2 Flotation/Uplift

Potential uplift pressures acting on base slabs and hydrostatic pressures on walls is expected for permanent structures along the subway alignment. The measured water levels below ground surface in the three boreholes drilled along the alignment ranged from about 11 m depth (at Highway 407 Station) to 5 m depth (at Highway 7 Station). The expected water head difference using the latest measured water levels and the expected elevation of station base slab are summarized below.

Station	Base Slab Elevation (m)	Nearest Reference Borehole	Head Difference to Base Slab (Piezometer) (m)			
Highway 407	173	Y-140, Y-141	+12			
Highway 7	183	Y-142	+15			

Notes: 1) Elevation of base slab is estimated from the subway vertical alignment profile as provided by the York Consortium in November 2006 ; to be reviewed as required with the final EA alignment.

2) The head difference is obtained using the latest water level measurements in piezometers.

3) (+) refers to water head (in metres) above the elevation of base slab at the proposed station.

7.1.1.3 Lateral Earth Pressures

Geotechnical literature suggests that in situ horizontal stresses, often described in terms of the ratio of in situ horizontal to vertical stress (K_o), within heavily over-consolidated glacial tills may be high with K_o values on the order of 1 or more. Because of excavation processes, such high lateral stresses will likely be relieved to some degree. Although active stresses may be developed during excavation, relieving the in situ stresses, the permanent structures will likely be restrained against displacement and there may be some long-term reestablishment of in situ stresses that are closer to the initial conditions. Therefore, for preliminary design of underground structures, lateral pressures may be assumed to be approximately half of the vertical stress. For preliminary design, the horizontal stresses, σ^{1}_{h} , can be assumed to be equivalent to:

- $\sigma_{h}^{l} = 0.5(z)21$ kPa, where z is the depth from the ground surface to a maximum equal to the depth to the groundwater level
- $\sigma_{h}^{1} = 0.5(z)21 + 0.5(z_{w})11$ kPa, where z_{w} is the depth below the groundwater level

For preliminary design, groundwater pressure may be assumed to be equivalent to 9.81z_w.

Lateral stresses for final design must be refined from these estimates based on additional exploration and testing. It is considered, however, that the stresses given above should be sufficient for preliminary proportioning of structure sizes for initial planning or costing purposes.

7.1.1.4 Backfill to Structures

Backfill for the stations should consist of well-compacted fill that is compatible with the hydrogeologic conditions of the surrounding ground at each station site. It is generally recommended that the in situ permeability of mass backfill be similar to that of the surrounding ground.

This is particularly of concern where granular backfill is used for large excavations for station construction that pass through native cohesive ground. The pore space within the granular backfill will become saturated with time, and may exacerbate undesirable leakage in the permanent structure or undesirable groundwater flow patterns. Furthermore, if the surrounding ground is suspected to or shown to be affected by contamination, it will be necessary to use low permeability backfill materials to limit the potential for aquifer cross-contamination.

The available subsurface data collected along the alignment indicate that the existing native till deposits should be generally suitable for placement and compaction as backfill for cut and cover excavations.

7.1.2 Excavations

Cut-and-cover construction may be carried out by either creating a wide open cut with sloped sides or, if space is restricted, by providing structural support to excavations with vertical walls.

Based on the prevailing ground conditions, temporary cuts for open-cut construction may be made with side slopes in the range of 1H:1V to 1.5H :1V. It is expected, however, that in most instances, vertical excavation sides will be required and that these excavations will require some form of temporary shoring. The shoring may take the form of soldier-piles and wood lagging walls, drilled secant pile (caisson) walls, or soil-nail ground support. Horizontal support may be provided by internal braces or drilled anchors that extend into the ground behind the supporting walls.

Where temporary or permanent easements can be obtained from neighbouring property owners, it may be assumed that ground anchors or soil nails will extend horizontally (or at some shallow angle) into the ground a distance of up to twice the depth of the excavation. For soil nail supported excavations, this distance may be less (approximately equal to the excavation depth) but for planning purposes, the greater extent should be used since the actual or likely support systems are unknown at this time.

7.1.2.1 Temporary Ground Support Systems

For temporary ground support of deep excavations, soldier pile and lagging walls are typically used where groundwater conditions are favourable or where dewatering is carried out and wall and ground displacement are permitted to some degree. Where ground displacement must be minimized and the ground support system must be closely controlled, contiguous bored and cast-in-place concrete pile (secant pile) walls are often used.

In some instances, depending on cost and ground/groundwater condition considerations, soil nail walls or concrete diaphragm walls may also be appropriate. It is anticipated that sheet pile walls will have limited application, if any, for this project since the ground is too dense for driven sheet pile installation to the depth required. Concrete diaphragm walls are also seldom used in the Greater Toronto Area since continuous concrete walls can be constructed in situ using the secant pile wall technique, for which many local contractors are equipped.

Lateral pressures for design of the temporary structures will depend on the temporary structure design. For flexible walls, such as soldier piles and lagging or sheet piles, the distribution of lateral pressure may take on a trapezoidal shape, whereas for stiffer walls, such as secant pile or concrete diaphragm walls, the lateral pressure distribution may be similar to a more common triangular active earth pressure distribution with magnitudes to up to half of those given above for design of permanent structures.

For final design and construction, recommended lateral pressure distributions for temporary shoring walls should be developed for each particular construction situation.

7.1.2.2 Evaluation of Settlement Adjacent to Shored Excavations

During construction, the ground surrounding the excavations which are supported by soldier piles and lagging walls may deform up to about 0.2 per cent of the excavation depth in both the horizontal and vertical directions. Ground displacements for secant pile walls or well-constructed soil-nail supported walls can be about half of this value, depending on design and workmanship.

In general, the maximum displacements occur very near to the edge of the excavation and dissipate to nominal values at distances ranging from approximately equal to the excavation depth or up to twice this distance for relatively poor ground conditions. Displacements on the order of 0.2 per cent of the excavation depth, or about 30 mm for a 15 m deep excavation, can be damaging to buildings or utilities that are within the "zone of influence".

A detailed examination of the geometry of the site, ground conditions, and nearby structures should be completed for all buildings and utilities that are within a distance of about 1.5 to 2.0 times the depth to the base of the excavation, as per the requirements of the TTC Design Manual (if applicable).

7.2 Tunnelling Methods

In general, the anticipated ground conditions along the proposed alignment should be favourable to tunnel construction. A brief summary of possible techniques is provided below.

- **Tunnel Boring Machine (TBM):** For relatively long lengths of tunnel, generally greater than about 600 m as anticipated for this proposed alignment, it is considered feasible and likely economically suitable to use a tunnel boring machine. Tunnel boring machines are generally not suited to construction of underground transit stations. The recently-built Sheppard Subway was constructed using TBMs specifically designed for and purchased by the TTC. These TBMs were designed as earth-pressure-balance (EPB) machines so as to assist in controlling ground displacements in potentially difficult ground conditions below groundwater levels. Boulders may present difficulties for machine tunnelling, but the TBMs designed and used for the Sheppard Subway performed well with a head configured with both rock and soil cutting tools.
- Sequential Excavation Method (SEM): The sequential excavation method (sometimes called NATM), in which a number of short-length stages of mechanically-assisted and unsupported excavation are followed immediately by steel ribs and shotcrete lining construction, may also be a suitable technique for relatively short sections of tunnel or the

Highway 407 Station. Although soft-ground SEM/NATM has not been used frequently in the Toronto area, it is becoming a more common technique and may prove economically and technically suitable for portions of the Vaughan Subway Link. Ground conditions, particularly those where the till deposits are extensive, should be generally favourable for such construction provided that groundwater in granular deposits is adequately controlled and that the tunnel and/or station has a depth of cover at least equal to the diameter of the tunnel.

• In addition to the use of TBMs and the SEM, tunnels or mined stations (if such might be considered) could be completed with a number of other techniques, depending on the required tunnel or station geometry. Such techniques could include use of large or irregularly-shaped tunnelling shields (as used for University Station in Toronto), jacked pipe arches, and hand-mining with steel plates for temporary liner construction. As with the SEM techniques, groundwater control would be critical for successful construction using such alternative methods. Additional information and recommendations on alternative methods should be further developed as the project progresses through preliminary design.

Construction of running tunnels or mined stations using tunnelling techniques will also induce ground displacements. Typically, during construction of the Sheppard Subway using a tunnel boring machine, displacement of ground similar to that which may be encountered along the Vaughan Subway Link was limited to about 30 mm or less, though instances of greater settlement should be expected depending on the depth to the tunnel, workmanship, and local conditions. Where the ground conditions consisted of hard cohesive soils in the bottom of the tunnel and saturated granular soils in or near the top of the tunnel, larger settlements and ground losses occurred. An instrumentation program carried out in conjunction with tunnel construction should assist in identifying locations of higher than acceptable ground loss allowing remedial grouting to be completed to minimize the effects of tunnelling on surface features or foundations.

Where the tunnels pass directly beneath existing structures (eg. Jane Street overpass at Highway 407), additional ground control measures may be necessary. Such measures could include underpinning or various forms of grouting. It is generally recommended that any tunnelling that is to be carried out beneath buildings be at a depth that leaves a distance of at least twice the tunnel diameter between the crown of the tunnel and the underside of any building foundations.

Tunnelling beneath buildings is feasible and has been accomplished successfully on many projects throughout Canada and world-wide, though special construction measures may be needed to limit potential risks and consequent costs. Detailed settlement and building damage potential evaluations should be completed for any areas where it is contemplated that tunnelling will be completed beneath buildings that are to remain in place during construction. Typically, ground displacements often occur at a maximum over the centreline of the tunnel and dissipate to nominal values over a distance perpendicular (in each direction) to the centreline approximately equal to the depth to the tunnel.

A detailed examination of the geometry of the site, ground conditions, and nearby structures should also be completed if any buildings are within a horizontal distance of about 1.5 times the depth to the centreline of the tunnel (the "zone of influence"), as per the requirements of the TTC Design Manual (if applicable).

Use of some tunnel construction methods may necessitate groundwater control by active dewatering. The water-bearing granular soils, if exposed, will flow into tunnel faces unless the water is removed. If active dewatering is not permitted, other measures may be necessary to facilitate construction. If earth pressure balance or slurry machines are used for tunnel excavation, dewatering may not be necessary except at certain shafts or isolated construction incidents or locations.

The selection of the primary tunnel lining will have an influence on whether or not dewatering is required or groundwater is drawn down. Use of a precast, segmented, and gasketed concrete liner will minimize effects on local groundwater conditions whereas use of a ribs and lagging liner wall create a large horizontal drain within the water bearing deposits and create an extensive zone of groundwater influence beyond the tunnel alignment.

Alternatively, if tunnels are constructed by other methods (e.g. SEM/NATM) ground improvement using grouting techniques (permeation or jet grouting) to effectively plug the pore space in the soil or replace the soil may be used to limit flows of water through the ground and into the tunnels. Other groundwater control measures may be feasible depending on the details of the design and local subsurface conditions. Additional design and subsurface investigations will be required, however, prior to further assessment of groundwater control needs. Further discussion on dewatering is presented below.

7.3 Dewatering

Dewatering of the interstadial granular soils (Upper Sand/Silt) will be necessary for cut-and-cover stations, running track, or crossover track structures. In addition, it is anticipated that dewatering may be required for the start and end shafts for tunnels constructed with tunnel boring machines, and for ventilation/emergency exits. Based on previous construction for Toronto subway projects, such dewatering may be accomplished using deep wells, eductor well systems or well-points installed within excavations. It is anticipated that active dewatering for lengths of tunnel constructed using closed-face tunnel boring machines would not be required.

For the purpose of this Environmental Assessment, an outline assessment of potential dewatering conditions was conducted. This dewatering assessment, limited in its scope, considered the following:

- Construction of an underground station near Highway 407, Jane Street and Black Creek, with subsurface conditions consisting of water-bearing granular deposits (Upper Sand/Silt), up to 2 m thick, near the ground surface above the cohesive deposit (Upper Till).
- Construction of an underground station at Highway 7 and Millway Avenue, with subsurface conditions consisting of water-bearing granular deposits with a thickness on the order of about 8 m to 10 m.
- Construction was assumed to be completed using conventional cut-and-cover methods without implementation of any groundwater control measures except for dewatering using wells or well points.
- The permeability (hydraulic conductivity) of the granular deposits around Highway 7 station was assumed to be between 5×10^{-3} and 5×10^{-5} cm/s.

Based on these assumptions, it is anticipated that nominal dewatering is expected at the site of the Highway 407 Station to control the stormwater and residual flows during construction. The lateral extent of the groundwater drawdown at the site of Highway 7 Station could be on the order of 500 m to 1,500 m from the dewatering system to where the drawdown is on the order of about 1 m. Typical flows extracted from a dewatering system installed for construction of the hypothetical station conditions assumed above are estimated to range between 1,000 and 5,000 litres per minute for the 150 m long stations. Should cross-overs or tail track structures be dewatered concurrently with the station, discharge flows will be greater. These values are consistent with the magnitudes of dewatering discharge from station construction work on the Sheppard and Eglinton Subway projects. Given that the granular soils are typically very dense and the cohesive soils range between firm to hard, the influence of dewatering on settlement of the surrounding ground should be relatively minimal.

Further investigations and analyses will be required to better define estimated dewatering quantities and drawdown radius values for final design and final permitting. At each of the station areas noted above, the available information suggests that continuous excavation support walls (e.g. secant pile or concrete diaphragm walls) may be constructed to pass through and cut off the aquifers since the aquifers appear to be confined with the base of the granular soils above the bottom of the excavation with relatively thick cohesive (aquitard) deposits below.

Where groundwater taking is carried out near potentially contaminated sites or at the Highway 407 site where there had been ongoing agricultural activities, the groundwater extracted during dewatering may require treatment prior to disposal.

8.0 LIMITATIONS AND USE OF REPORT

This report was prepared for the exclusive use of the Consortium and York Transit and the reader is referred to the "Important Information and Limitations of This Report". Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of the third party. The report is based on data and information collected during the assessment of the Highway 7 transitway route options and the geotechnical investigation conducted by Golder in 2006. The report is based solely on the conditions observed at the time of limited visual reconnaissance, supplemented by a review of historical and publicly available information and field data obtained by Golder as described in this report.

This report is intended to be used for planning purposes only as consistent with the feasibility and selected alignment at the time this report was prepared. Additional explorations of subsurface conditions will need to be carried out to better define the local geologic stratigraphy, groundwater levels, and the engineering properties of the subsurface materials for design.

9.0 CLOSURE

We trust this report provides the information required. However, should you have any questions, please do not hesitate to contact the undersigned.

Yours truly,

GOLDER ASSOCIATES LTD.

Original to be signed by Lisa Coyne for:

Beng Lay Teh Geotechnical Group

Original to be signed by:

Storer J. Boone, P.Eng., Ph.D. Associate

Original to be signed by:

John Westland, P.Eng. Principal

BLT/SJB/JW/sm/al

n:\active\2006\1111\06-1111-040 york consortium vaughan n-s link ea vaughan york\reports\in progress\06-1111-040 rpt 07jan08 vnsl assessment report.doc

Golder Associates

IMPORTANT INFORMATION AND LIMITATIONS OF THIS REPORT

Standard of Care: Golder Associates Ltd. (Golder) has prepared this report in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practising under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this report. No other warranty, expressed or implied is made.

Basis and Use of the Report: This report has been prepared for the specific site, design objective, development and purpose described to Golder by the Client. The factual data, interpretations and recommendations pertain to a specific project as described in this report and are not applicable to any other project or site location. Any change of site conditions, purpose, development plans or if the project is not initiated within eighteen months of the date of the report may alter the validity of the report. Golder can not be responsible for use of this report, or portions thereof, unless Golder is requested to review and, if necessary, revise the report.

The information, recommendations and opinions expressed in this report are for the sole benefit of the Client. No other party may use or rely on this report or any portion thereof without Golder's express written consent. If the report was prepared to be included for a specific permit application process, then upon the reasonable request of the client, Golder may authorize in writing the use of this report by the regulatory agency as an Approved User for the specific and identified purpose of the applicable permit review process. Any other use of this report by others is prohibited and is without responsibility to Golder. The report, all plans, data, drawings and other documents as well as all electronic media prepared by Golder are considered its professional work product and shall remain the copyright property of Golder, who authorizes only the Client and Approved Users to make copies of the report, but only in such quantities as are reasonably necessary for the use of the report by those parties. The Client and Approved Users may not give, lend, sell, or otherwise make available the report or any portion thereof to any other party without the express written permission of Golder. The Client acknowledges that electronic media is susceptible to unauthorized modification, deterioration and incompatibility and therefore the Client can not rely upon the electronic media versions of Golder's report or other work products.

The report is of a summary nature and is not intended to stand alone without reference to the instructions given to Golder by the Client, communications between Golder and the Client, and to any other reports prepared by Golder for the Client relative to the specific site described in the report. In order to properly understand the suggestions, recommendations and opinions expressed in this report, reference must be made to the whole of the report. Golder can not be responsible for use of portions of the report without reference to the entire report.

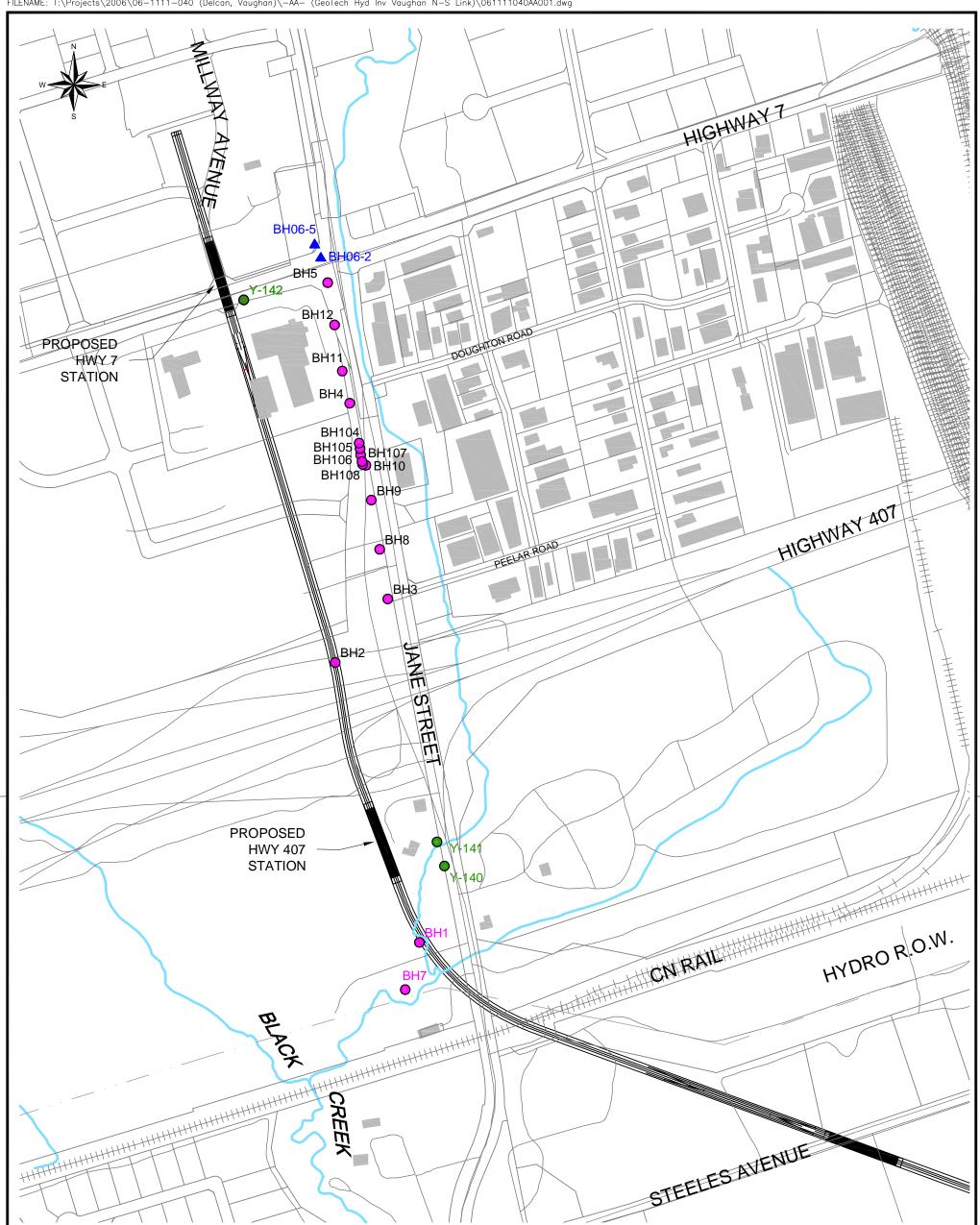
Unless otherwise stated, the suggestions, recommendations and opinions given in this report are intended only for the guidance of the Client in the design of the specific project. The extent and detail of investigations, including the number of test holes, necessary to determine all of the relevant conditions which may affect construction costs would normally be greater than has been carried out for design purposes. Contractors bidding on, or undertaking the work, should rely on their own investigations, as well as their own interpretations of the factual data presented in the report, as to how subsurface conditions may affect their work, including but not limited to proposed construction techniques, schedule, safety and equipment capabilities.

Soil, Rock and Groundwater Conditions: Classification and identification of soils, rocks, and geologic units have been based on commonly accepted methods employed in the practice of geotechnical engineering and related disciplines. Classification and identification of the type and condition of these materials or units involves judgment, and boundaries between different soil, rock or geologic types or units may be transitional rather than abrupt. Accordingly, Golder does not warrant or guarantee the exactness of the descriptions.

IMPORTANT INFORMATION AND LIMITATIONS OF THIS REPORT (cont'd)

Special risks occur whenever engineering or related disciplines are applied to identify subsurface conditions and even a comprehensive investigation, sampling and testing program may fail to detect all or certain subsurface conditions. The environmental, geologic, geotechnical, geochemical and hydrogeologic conditions that Golder interprets to exist between and beyond sampling points may differ from those that actually exist. In addition to soil variability, fill of variable physical and chemical composition can be present over portions of the site or on adjacent properties. **The professional services retained for this project include only the geotechnical aspects of the subsurface conditions at the site, unless otherwise specifically stated and identified in the report.** The presence or implication(s) of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference for this project and have not been investigated or addressed.

Soil and groundwater conditions shown in the factual data and described in the report are the observed conditions at the time of their determination or measurement. Unless otherwise noted, those conditions form the basis of the recommendations in the report. Groundwater conditions may vary between and beyond reported locations and can be affected by annual, seasonal and meteorological conditions. The condition of the soil, rock and groundwater may be significantly altered by construction activities (traffic, excavation, groundwater level lowering, pile driving, blasting, etc.) on the site or on adjacent sites. Excavation may expose the soils to changes due to wetting, drying or frost. Unless otherwise indicated the soil must be protected from these changes during construction.


Sample Disposal: Golder will dispose of all uncontaminated soil and/or rock samples 90 days following issue of this report or, upon written request of the Client, will store uncontaminated samples and materials at the Client's expense. In the event that actual contaminated soils, fills or groundwater are encountered or are inferred to be present, all contaminated samples shall remain the property and responsibility of the Client for proper disposal.

Follow-Up and Construction Services: All details of the design were not known at the time of submission of Golder's report. Golder should be retained to review the final design, project plans and documents prior to construction, to confirm that they are consistent with the intent of Golder's report.

During construction, Golder should be retained to perform sufficient and timely observations of encountered conditions to confirm and document that the subsurface conditions do not materially differ from those interpreted conditions considered in the preparation of Golder's report and to confirm and document that construction activities do not adversely affect the suggestions, recommendations and opinions contained in Golder's report. Adequate field review, observation and testing during construction are necessary for Golder to be able to provide letters of assurance, in accordance with the requirements of many regulatory authorities. In cases where this recommendation is not followed, Golder's responsibility is limited to interpreting accurately the information encountered at the borehole locations, at the time of their initial determination or measurement during the preparation of the Report.

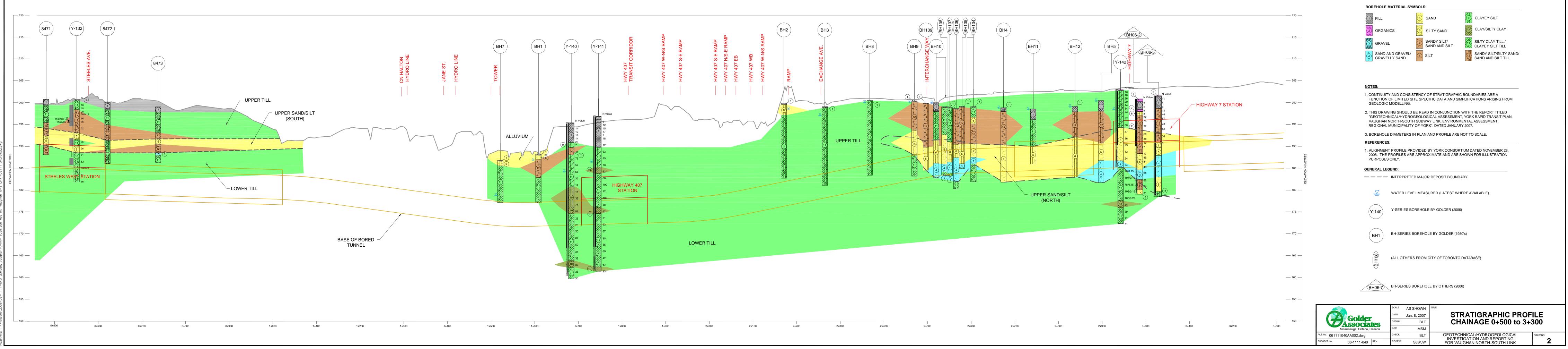
Changed Conditions and Drainage: Where conditions encountered at the site differ significantly from those anticipated in this report, either due to natural variability of subsurface conditions or construction activities, it is a condition of this report that Golder be notified of any changes and be provided with an opportunity to review or revise the recommendations within this report. Recognition of changed soil and rock conditions requires experience and it is recommended that Golder be employed to visit the site with sufficient frequency to detect if conditions have changed significantly.

Drainage of subsurface water is commonly required either for temporary or permanent installations for the project. Improper design or construction of drainage or dewatering can have serious consequences. Golder takes no responsibility for the effects of drainage unless specifically involved in the detailed design and construction monitoring of the system.

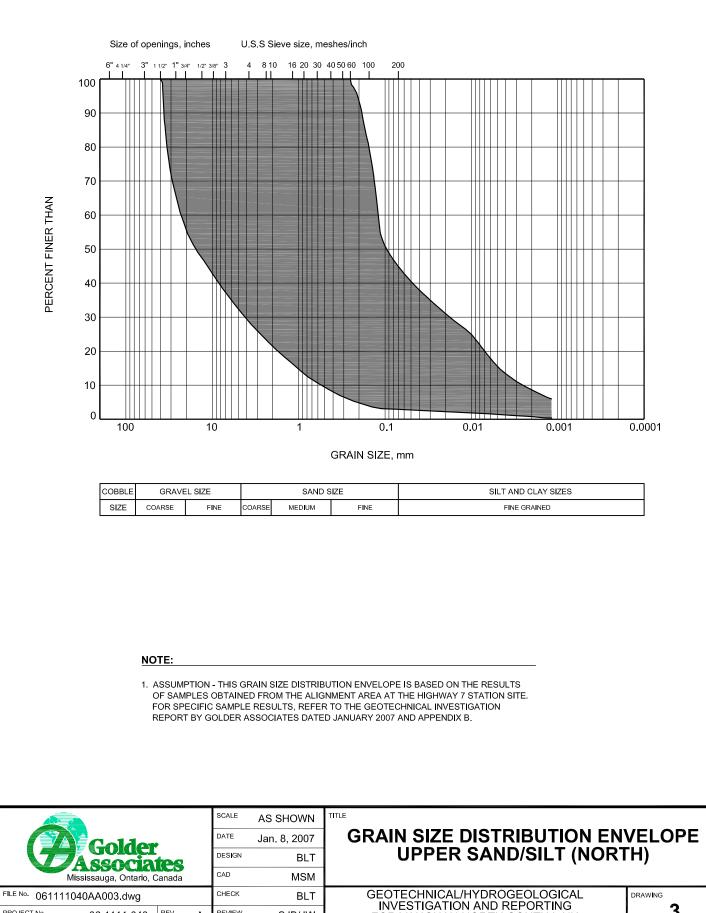
PLOT DATE: December 27, 2006 FILENAME: T:\Projects\2006\06-1111-040 (Delcan, Vaughan)\-AA- (GeoTech Hyd Inv Vaughan N-S Link)\061111040AA001.dwg

NOTES:

1. PROJECTION IS UTM NAD83, ZONE 17.


2. BASE MAPPING PROPOSED ALIGNMENT AND STATION LOCATIONS ARE AS PROVIDED BY YORK CONSORTIUM DATED DECEMBER 5, 2006.

LEGEND:


- BOREHOLES (GOLDER 2006)
- EXISTING BOREHOLES (GOLDER 1980's)
- EXISTING BOREHOLES (BY OTHERS 2006)

Golder	SCALE AS SHOWN DATE DEC. 14, 2006 DESIGN	BOREHOLE LOCATION PLAN						
Mississauga, Ontario, Canada	CAD MSM							
FILE No. 061111040AA001.dwg	CHECK BLT	VAUGHAN NORTH-SOUTH LINK	DRAWING NO.					
PROJECT No. 06-1111-040 REV.	REVIEW SJB		1					

1+300	1+400	1+500	1+600	1+700	1+800	1+900	2+000	2+100	2+200	2+300	2+400	2+500	2+600	2+700	2+800	2+900	3+000	3+100

PROJECT No.

06-1111-040

REV.

REVIEW

А

SJB/JW

FOR VAUGHAN NORTH-SOUTH LINK

APPENDIX A

GEOTECHNICAL INVESTIGATION REPORT BY GOLDER ASSOCIATES LTD.

Golder Associates Ltd.

2390 Argentia Road Mississauga, Ontario, Canada L5N 5Z7 Telephone: (905) 567-4444 Fax: (905) 567-6561

GEOTECHNICAL INVESTIGATION REPORT

YORK RAPID TRANSIT PLAN VAUGHAN NORTH-SOUTH SUBWAY LINK SUPPLEMENTARY TO ENVIRONMENTAL ASSESSMENT REGIONAL MUNICIPALITY OF YORK, ONTARIO

Submitted to:

York Consortium 2002 1 West Pearce Street, 6th Floor Richmond Hill, Ontario L4B 3K3

January 2007

06-1111-040

TABLE OF CONTENTS

<u>SEC</u> T	TION		PAGE
1.0	INTF	RODUCTION	1
2.0	PRO.	JECT AND SITE DESCRIPTION	2
3.0	INVI 3.1 3.2	ESTIGATION PROCEDURES Groundwater Testing Soil Testing and Disposal	4
4.0	SUB3 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	SURFACE CONDITIONS ENCOUNTERED DURING INVESTIGATION Asphalt Topsoil Fill Sand and Gravel (Type 4) Sand (Type 5) Sandy Silt (Type 7) Silty Clay to Clay (Types 9 and 10) Clayey Silt to Silty Clay Till (Type 11) Groundwater Conditions 4.9.1 Rising Head Tests.	5
5.0	CLO	SURE	10

In Order Following Page 10

Lists of Abbreviations and Symbols Records of Boreholes Y-140 to Y-142 Drawing 1 Figures 1 to 12 Attachments 1 and 2

Golder Associates

LIST OF DRAWINGS

Drawing 1 Borehole Location Plan

LIST OF FIGURES

- Figure 1 Grain Size Distribution Test Results Sand (Type 5)
- Figure 2 Grain Size Distribution Test Result Sandy Silt (Type 7)
- Figure 3 Grain Size Distribution Test Results Silty Clay to Clay (Type 9 and 10)
- Figure 4 Plasticity Chart Silty Clay to Clay (Types 9 and 10)
- Figure 5 Grain Size Distribution Test Results Clayey Silt to Silty Clay Till (Type 11)
- Figure 6 Plasticity Chart Clayey Silt to Silty Clay Till (Type 11)
- Figure 7Grain Size Distribution Test Results Borehole Y-140
- Figure 8 Plasticity Chart Borehole Y-140
- Figure 9 Grain Size Distribution Test Results Borehole Y-141
- Figure 10 Plasticity Chart Borehole Y-141
- Figure 11 Grain Size Distribution Test Results Borehole Y-142
- Figure 12 Plasticity Chart Borehole Y-142

LIST OF ATTACHMENTS

- Attachment 1 Rising Head Tests, Records and Calculations (Boreholes Y-140 and Y-142)
- Attachment 2 Results of Water Quality Test and Soil Chemical Tests

1.0 INTRODUCTION

Golder Associates Ltd. ("Golder") was retained by the York Consortium 2002 (the "Consortium"), on behalf of York Region Transit ("York Transit"), to assist in the completion of a geotechnical investigation to supplement the subsurface data for the Environmental Assessment of the proposed subway connection with the future Spadina Subway Extension located at York University campus, just south of Steeles Avenue in Toronto, Ontario.

The purpose of this factual report is to provide preliminary information on the subsurface conditions (soil and groundwater) at the two proposed stations of the subway alignment.

2.0 PROJECT AND SITE DESCRIPTION

The location of the project is illustrated on Drawing 1. The subway alignment is proposed to run from the future Steeles Subway Station on the Spadina Subway Extension, extend northwest across Steeles Avenue, then turn north to run along the west side of Jane Street, cross beneath Black Creek and Highway 407, and terminate near the intersection of Highway 7 and Millway Avenue. The proposed subway will run parallel to Jane Street for most of the alignment.

Two underground subway stations have been proposed for the alignment at the following locations:

- Approximately 100 m west of Jane Street between Highway 407 and its west-south exit ramp onto Jane Street; and
- Approximately 225 m west of Jane Street at the intersection of Highway 7 and Millway Avenue.

3.0 INVESTIGATION PROCEDURES

The field work for the Vaughan North-South Subway Link was carried out from October 25, 2006 to November 7, 2006, at which time three boreholes (Boreholes Y-140 to Y-142) were advanced to depths of between 30.6 m and 35.5 m below ground surface. These boreholes were advanced in the general vicinity of the proposed stations. The borehole and well locations are shown on Drawing 1.

The borehole investigation and well installations were carried out using a track-mounted and truck-mounted drill rigs, both supplied and operated by Walker Drilling of Utopia, Ontario. The borehole investigation was carried out using 108 mm internal diameter continuous flight hollow stem augers. Soil samples were obtained at intervals of 0.76 m for depths up to 4.6 m, and at intervals of 1.5 m for the remaining depth of the boreholes, using a 50 mm outside diameter split-spoon sampler driven by an automatic hammer in accordance with the Standard Penetration Test (SPT) procedure.

Groundwater conditions were observed in the open boreholes during and after the drilling operations. Each borehole included an observation well, which consisted of a 1.5 m long, 50 mm diameter slotted screen installed within a filter sand pack. All boreholes were terminated within a till deposit and backfilled above the sand pack to the ground surface with bentonite pellets; flush-mounted protective casings were installed. The installation details are shown on the Record of Borehole sheets for Boreholes Y-140 to Y-142.

The field work was supervised throughout by a member of Golder's technical staff, who located the boreholes in the field, arranged for the clearance of underground services, observed the drilling, sampling and in situ testing operations, logged the boreholes, and examined and cared for the soil samples obtained. The samples were identified in the field, placed in appropriate containers, labelled and transported to Golder's Mississauga geotechnical laboratory where the samples underwent further visual examination and laboratory testing. Classification tests (water content determinations, Atterberg limit tests and grain size distribution analyses) were carried out on selected soil samples. All of the laboratory tests were carried out to applicable ASTM Standards.

Rising head tests were performed on two of the monitoring wells to determine the hydraulic conductivity of the overburden soils. For each test, approximately 2 litres of groundwater was removed rapidly from the observation well and the water level recovery was monitored manually using an electronic water level meter over a period of time. The results are included in Attachment 1.

The northings, eastings and elevations of the as-drilled borehole locations were surveyed by J&R Surveys Ltd. of Mississauga, and are summarized below. The borehole locations are based

Golder Associates

Borehole Number	Locations	Northing (m)	Easting (m)	Ground Surface Elevation (m)
Y-140	Jane and 407 – South	4,848,814.9	618,935.8	195.39
Y-141	Jane and 407 – North	4,848,864.6	618,920.5	196.93
Y-142	Highway 7 and Millway Ave	4,849,983.9	618,521.5	202.94

on the UTM NAD83 (Zone 17) coordinate system, and the ground surface elevations at the borehole locations are referenced to the geodetic datum.

3.1 Groundwater Testing

A groundwater sample was obtained from Borehole Y-140 and submitted to AGAT Analytical Laboratories for analysis in accordance to the York Region Storm Sewer Use By-Law. The well was bailed with a Waterra foot valve and developed in order to obtain a representative sample of the aquifer water quality. However, due to the construction and well yield of Borehole Y-140, the sampled groundwater contained a high degree of suspended solids.

The laboratory test results are included in Attachment 2. The results indicate that there are elevated concentrations of some metal parameters (such as manganese, aluminium, iron and titanium) and nitrogen.

3.2 Soil Testing and Disposal

In order to characterize the chemical quality of the subsurface material for the disposal of soil cuttings, composite samples from boreholes were collected and submitted to AGAT Analytical Laboratories for Toxicity Characteristic Leaching Procedure (TCLP) testing. The laboratory test results are included in Attachment 2. No visual or olfactory evidence of environmental impact was encountered during this geotechnical investigation.

Based on the results of the testing, the subsurface materials at the investigated locations were characterized and managed as non-hazardous materials according to the definition provided by Ontario Regulation 347 (as amended), and were disposed of as non-hazardous waste (daily cover) at the PSE Taro Landfill site.

4.0 SUBSURFACE CONDITIONS ENCOUNTERED DURING INVESTIGATION

The stratigraphic boundaries shown on the borehole records are inferred from non-continuous sampling, observations of drilling progress and the results of Standard Penetration Tests and, therefore, represent transitions between soil types rather than exact planes of geological change. Subsoil conditions will vary between and beyond the borehole locations. Bedrock was not encountered in any of the boreholes.

The soil types described on the Record of Borehole sheets and the laboratory test results included in this report are given twelve different classifications and graphic symbols (Types 1 through 12), which are consistent with the range of soil deposits anticipated to be encountered for subway construction in the Greater Toronto Area.

The classification system generally utilized is listed below:

- Fill (Type 1)
- Organics (Type 2)
- Gravel to Sand and Gravel (Types 3 and 4)
- Sand to Silty Sand (Types 5 and 6)
- Sandy Silt to Silt (Types 7 and 8)
- Clayey Silt to Clay (Types 9 and 10)
- Clayey Silt Till (Type 11)
- Sandy Silt Till (Type 12)

Note that Deposit Types 11 and 12 are interpreted as glacial till deposits on the basis of their heterogeneous structure, the relatively broad grain size distribution and the documented local geology.

The results of the laboratory tests have been grouped by Deposit Types (Figures 1 to 6) and also Borehole Locations (Figures 7 to 12).

A brief discussion of the materials encountered in the boreholes advanced during this investigation is provided in the subsections that follow.

4.1 Asphalt

A 0.1 m thick layer of asphalt was encountered in Boreholes Y-140 and Y-141, as these were drilled within roadways.

4.2 Topsoil

A 0.2 m thick layer of topsoil was encountered at the ground surface in Borehole Y-142, which was drilled on the landscaped area adjacent to the roadway.

4.3 Fill

Fill material, which forms the embankment for Jane Street approaching Highway 407, was encountered beneath the asphalt in Boreholes Y-140 and Y-141. The upper fill layer consisted of sand and gravel to sand that ranged in thickness from 1.1 m to 1.4 m, and the lower fill layer consisted of clayey silt that ranged in thickness from 3.4 m to 6.1 m.

The measured Standard Penetration Test (SPT) "N" values in the sand fill ranged from 6 to 14 blows per 0.3 m of penetration, indicating a loose to compact relative density. The measured SPT "N" values in the clayey silt fill ranged from 9 to 23 blows per 0.3 m of penetration, indicating a stiff to very stiff consistency.

Measured water contents obtained from the twelve selected samples of the fill material were between 4 and 17 per cent.

4.4 Sand and Gravel (Type 4)

A 1.5 m thick layer of sand and gravel containing trace to some silt was encountered at about Elevation 186.7 m, toward the base of Borehole 142.

The measured SPT "N" value within the sand and gravel layer was 24 blows per 0.3 m of penetration, indicating a compact relative density. The measured natural water content of the sample obtained was 9 per cent.

4.5 Sand (Type 5)

A granular deposit consisting mainly of grey sand with some silt and trace clay was encountered within the glacial till deposit in Borehole Y-142. The upper surface of the granular deposit was encountered at about Elevation 193.3 m and it had a thickness of about 7.6 m.

The measured SPT "N" values within the sand deposit ranged from 13 to 37 blows per 0.3 m of penetration, indicating a compact to dense relative density.

Golder Associates

Grain size distribution analyses were carried out on two selected samples of the granular deposit and an envelope of the grain size distribution test results is shown on Figure 1. The uniformity coefficient (Uc) of this granular layer is estimated to be between 3 and 40. The measured natural water contents of five selected samples obtained within the sand layer ranged from 17 to 23 per cent.

4.6 Sandy Silt (Type 7)

An interstadial granular layer, which consists of sandy silt containing trace clay and gravel, was encountered at about Elevation 189.8 m, underlying the clayey silt deposit in Borehole Y-140; the layer had a thickness of about 1.7 m.

The measured SPT "N" value within the sandy silt layer was 44 blows per 0.3 m of penetration, indicating a dense relative density.

A grain size distribution analysis was carried out on one sample of the granular deposit and the grain size distribution test result is shown on Figure 2. The uniformity coefficient (Uc) of the sandy silt is estimated to be approximately 15.

The measured natural water content of the selected sample was 11 per cent.

4.7 Silty Clay to Clay (Types 9 and 10)

Interlayers of cohesive soils were encountered within the glacial till in all three boreholes: four such interlayers were encountered within the glacial till at Borehole Y-140, three were encountered in Borehole Y-141 and one was encountered in Borehole Y-142. The composition of the interlayers ranged from clayey silt through to clay, with the variation reflecting differences in clay content and plasticity. The interlayers were typically between 1 m and 1.5 m thick, with the exception of Borehole Y-140 where the silty clay layer encountered at Elevation 180.7 m was about 4.6 m thick.

The measured SPT "N" values in the cohesive interlayers ranged from 7 to 93 blows per 0.3 m of penetration, indicating a firm to hard consistency. The majority of the tests were above 30 blows per 0.3 m of penetration, indicative of a generally hard consistency. The measured water contents obtained from selected samples of the cohesive deposit were between 15 and 29 per cent.

Grain size distribution analyses were carried out on seven selected samples of the deposit and the results are shown on Figure 3. Atterberg limit testing was carried out on six selected samples, and measured plastic limits between 16 and 23 per cent, liquid limits between 24 and 56 per cent, and corresponding plasticity indices between 8 and 33 per cent. The test results are plotted on a plasticity chart on Figure 4.

4.8 Clayey Silt to Silty Clay Till (Type 11)

Glacial till, containing interlayers of granular/cohesive soil, was the predominant soil type encountered in all three boreholes (Boreholes Y-140 to Y-142).

In Boreholes Y-140 and Y-141, the surface of the till deposit was encountered between Elevations 188.1 and 189.8 m. In Borehole Y-142, the till deposit was encountered immediately beneath the topsoil at about Elevation 202.8 m. The glacial till deposit consists mainly of brown to grey clayey silt containing trace to some sand and gravel; seams of grey silt were observed within the glacial till in Boreholes Y-140 and Y-141 below depths of 27.4 m to 29.0 m. Oxidizing stains were observed within the top portion of this deposit.

This cohesive till is differentiated from those materials classified as clayey silt to silty clay/clay (Types 9 and 10) on account of the more massive, heterogeneous structure and the presence of embedded angular coarse sand and fine gravel.

The measured Standard Penetration Test (SPT) "N" values ranged from 12 blows to more than 100 blows per 0.3 m pf penetration, indicating a stiff to hard consistency.

Grain size distribution analyses were carried out on three samples of the till deposit and the results are shown on Figure 5. Atterberg limit testing was carried out on five selected samples of the glacial till, and measured plastic limits between 11 and 16 per cent, liquid limits between 17 and 32 per cent, and corresponding plasticity indices between 7 and 15 per cent, indicative of a low plasticity. The test results are plotted on a plasticity chart on Figure 6.

Measured water contents on selected samples of the clayey silt till typically ranged from 9 to 31 per cent, with an average of approximately 18 per cent.

4.9 Groundwater Conditions

The water levels within the open boreholes were noted after the drilling operations and are recorded on the borehole records. A standpipe piezometer was installed in each of the boreholes. Details of the piezometer installations are shown in the Record of Borehole sheets. The water levels measured in the piezometers are summarized in the following table:

Borehole Number	Ground Surface Elevation (m)	Water Level Depth (m)	Water Level Elevation (m)	Most Recent Date Measured
Y-140	195.39	11.12	184.27	December 10, 2006
Y-141	196.93	11.45	185.48	November 14, 2006
Y-142	202.94	4.80	198.14	November 14, 2006

It should be noted that the ground surfaces at Boreholes Y-140 and Y-141, which were drilled on the Jane Street embankment, are approximately 3 m to 4 m higher than the expected ground elevation of the proposed Highway 407 station.

The groundwater levels at the site are expected to fluctuate seasonally and are expected to rise during wet periods of the year, especially in proximity to Black Creek and its tributaries.

4.9.1 Rising Head Tests

The results of the single well response tests are presented in Attachment 1 and the calculated hydraulic conductivity values are summarized below. It should be noted that the calculated hydraulic conductivity values are only representative of the general soil mass between the top and bottom elevations of the sand-pack around the well screen or piezometer and for a limited distance within the soil deposit. The calculated hydraulic conductivity values should only be considered an indicator of the layer hydraulic properties and not a definitive measure of the overall formation behaviour. Layers of coarse material within this zone may unduly influence such tests and for final design and prior to construction, field pumping tests should be conducted in any areas in which dewatering or groundwater flow issues may be critical.

SUMMARY OF RISING HEAD TEST RESULTS

Location	Location Well Reference		Elevation of Well (m)	Calculated Hydraulic Conductivity (cm/s)
Highway 407 Station	Y-140	35.05	160.34	1.9 X 10 ⁻⁵
Highway 7 Station	Y-142	16.76	198.01	3.1 X 10 ⁻⁵

5.0 CLOSURE

We trust this report provided the information required. However, should you have any questions, please do not hesitate to contact the undersigned.

Yours truly,

GOLDER ASSOCIATES LTD.

Original to be signed by Lisa Coyne for:

Beng Lay Teh Geotechnical Group

Original to be signed by:

Storer J. Boone, P.Eng., Ph.D. Associate

Original to be signed by:

John Westland, P.Eng. Principal

NK/BLT/SJB/JW/sm/al

n:\active\2006\1111\06-1111-040 york consortium vaughan n-s link ea vaughan york\reports\in progress\06-1111-040 rpt 07jan08 vnsl geotech investigation report.doc

Golder Associates

LIST OF ABBREVIATIONS

The abbreviations commonly employed on Records of Boreholes, on figures and in the text of the report are as follows:

I. SAMPLE TYPE

III. SOIL DESCRIPTION

AS	Auger sample	(a)	Cohesionless Soils
BS	Block sample		
CS	Chunk sample	Density Index	Ν
DO	Drive open	(Relative Density)	Blows/300 mm or Blows/ft.
DS	Denison type sample		
FS	Foil sample	Very loose	0 to 4
RC	Rock core	Loose	4 to 10
SC	Soil core	Compact	10 to 30
ST	Slotted tube	Dense	30 to 50
TO	Thin-walled, open	Very dense	over 50
TP	Thin-walled, piston		

WS Wash sample

II. PENETRATION RESISTANCE

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg. (140 lb.) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) drive open sampler for a distance of 300 mm (12 in.)

(b) Cohesive Soils

			c _u ,s _u	
		<u>kPa</u>		<u>psf</u>
Very soft	0	to 12		0 to 250
Soft	12	to 25	25	0 to 500
Firm	25	to 50	50	0 to 1,000
Stiff	50	to 100	1,00	0 to 2,000
Very stiff	100	to 200	2,00	0 to 4,000
Hard	over	200	ove	er 4,000

Dynamic Cone Penetration Resistance; N_d:

- The number of blows by a 63.5 kg (140 lb.) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).
- PH: Sampler advanced by hydraulic pressure
- PM: Sampler advanced by manual pressure
- WH: Sampler advanced by static weight of hammer
- **WR:** Sampler advanced by weight of sampler and rod

Piezo-Cone Penetration Test (CPT)

A electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm^2 pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (Q₁), porewater pressure (PWP) and friction along a sleeve are recorded electronically at 25 mm penetration intervals.

IV. SOIL TESTS

Consistency

- • •	~
W	water content
Wp	plastic limit
wi	liquid limit
С	consolidation (oedometer) test
CHEM	chemical analysis (refer to text)
CID	consolidated isotropically drained triaxial test ¹
CIU	consolidated isotropically undrained triaxial test
	with porewater pressure measurement ¹
D _R	relative density (specific gravity, G _s)
DS	direct shear test
М	sieve analysis for particle size
MH	combined sieve and hydrometer (H) analysis
MPC	Modified Proctor compaction test
SPC	Standard Proctor compaction test
OC	organic content test
SO_4	concentration of water-soluble sulphates
UC	unconfined compression test
UU	unconsolidated undrained triaxial test
V	field vane (LV-laboratory vane test)
γ	unit weight
•	

Note: 1 Tests which are anisotropically consolidated prior to shear are shown as CAD, CAU.

S:\FINALDAT\ABBREV\2000\LOFA-D00.DOC

LIST OF SYMBOLS

Unless otherwise stated, the symbols employed in the report are as follows:

I.	General		(a) Index Properties (continued)
π	3.1416	w	water content
in x,	natural logarithm of x	\mathbf{w}_1	liquid limit
\log_{10}	x or log x, logarithm of x to base 10	Wp	plastic limit
g	acceleration due to gravity	lp	plasticity index = $(w_1 - w_p)$
t	time	Ws	shrinkage limit
F	factor of safety	I_L	liquidity index = $(w - w_p)/I_p$
V	volume	I _C	consistency index = $(w_1 - w) / I_p$
W	weight	e _{max}	void ratio in loosest state
		e _{min}	void ratio in densest state
II.	STRESS AND STRAIN	I_D	density index = $(e_{max} - e) / (e_{max} - e_{min})$
			(formerly relative density)
γ	shear strain		(b) Hydraulic Properties
Δ	change in, e.g. in stress: $\Delta \sigma$	h	hydraulic head or potential
3	linear strain	q	rate of flow
ε _v	volumetric strain	v	velocity of flow
η	coefficient of viscosity	i	hydraulic gradient
v	poisson's ratio	k	hydraulic conductivity (coefficient of permeability)
σ	total stress	j	seepage force per unit volume
σ'	effective stress ($\sigma' = \sigma$ -u)		
σ'_{vo}	initial effective overburden stress		(c) Consolidation (one-dimensional)
$\sigma_1, \sigma_2, \sigma_3$	principal stress (major, intermediate, minor)		
$\sigma_{\rm oct}$	mean stress or octahedral stress	C _c	compression index (normally consolidated range)
	$=(\sigma_1+\sigma_2+\sigma_3)/3$	Cr	recompression index (over-consolidated range)
τ	shear stress	C_s	swelling index
u	porewater pressure	C_a	coefficient of secondary consolidation
Е	modulus of deformation	m _v	coefficient of volume change
G	shear modulus of deformation	cv	coefficient of consolidation
K	bulk modulus of compressibility	T_v	time factor (vertical direction)
		U	degree of consolidation
III.	SOIL PROPERTIES	σ'_p	pre-consolidation pressure
		OCR	over-consolidation ratio = σ'_p / σ'_{vo}
	(a) Index Properties		

(a) Index Properties

ρ(γ)	bulk density (bulk unit weight*)
$\rho_d(\gamma_d)$	dry density (dry unit weight)
$\rho_w(\gamma_w)$	density (unit weight) of water
$\rho_s(\gamma_s)$	density (unit weight) of solid particles
γ′	unit weight of submerged soil ($\gamma' = \gamma - \gamma_{w}$)
D _R	relative density (specific gravity) of solid
	particles ($D_R = \rho_s / \rho_w$) (formerly G_s)
e	void ratio
n	porosity
S	degree of saturation

(d) Shear Strength

τ_p, τ_r	peak and residual shear strength
φ΄ δ	effective angle of internal friction
δ	angle of interface friction
μ	coefficient of friction = tan δ
c'	effective cohesion
c_u, s_u	undrained shear strength ($\phi = 0$ analysis)
р	mean total stress $(\sigma_1 + \sigma_3)/2$
p'	mean effective stress $(\sigma'_1 + \sigma'_3)/2$
q	$(\sigma_1 + \sigma_3)/2$ or $(\sigma'_1 + \sigma'_3)/2$
\mathbf{q}_{u}	compressive strength ($\sigma_1 + \sigma_3$)
$\mathbf{S}_{\mathbf{t}}$	sensitivity

Notes: 1 $\tau = c' + \sigma' \tan \phi'$

 $\begin{array}{ll} 2 & \text{shear strength} = (\text{compressive strength})/2 \\ * & \text{density symbol is } \rho. \ Unit weight symbol is } \gamma \ \text{where} \end{array}$ $\gamma = \rho g$ (i.e. mass density x acceleration due to gravity)

S:\FINALDAT\SYMBOLS\2000\SYMB-D00.DOC

LOCATION: N 4848814.9 ;E 618935.8

RECORD OF BOREHOLE: Y-140

SHEET 1 OF 4 DATUM: Geodetic

BORING DATE: November 3 - 6, 2006

	DO	SOIL PROFILE			SA	MPLE	s	DYNAMIC PENETRATIC RESISTANCE, BLOWS/	N \).3m (HYDRAULIC k, cm/s	CONDUCTIVITY,	ں,	
METRES	BORING METHOD		LOT		Ľ		.3m	20 40 6	١.		10 ⁻⁵ 10 ⁻⁴ 10 ⁻³	ADDITIONAL LAB. TESTING	PIEZOMETE
METF	ING I	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.3m	SHEAR STRENGTH n Cu, kPa re	atV. + Q-● mV ⊕ U-O	WATER		B. TEL	STANDPIP
	BOR		STRA	(m)	N		BLO	20 40 6		Wp	20 30 40	₹₹	
		GROUND SURFACE		195.39			1						Flush mount protective casing
0		ASPHALT		0.00									Concrete
1		Compact, heterogeneous, moist, brown sand, trace gravel; FILL (SP) Stiff to very stiff, heterogeneous, moist, brown and grey clayey silt, trace sand, trace gravel; FILL (CL-ML)		<u>194.17</u> 1.22	2	50 . DO	14 12 11			с 0			50 mm PVC Pipe
3					4	50 DO	14			o			
4	mm Augers gers	Firm, heterogeneous, moist, grey clayey SILT, trace sand, trace gravel, trace		<u>190.90</u> 4.50			23			0			
5	Power Auger, O.D. 108 mm Augers Hollow Stem Augers	brown and grey sandy SILT, trace clay,		<u>189.75</u> 5.64	6	50 DO	7				0		Hole Plug
6 7		trace gravel; (np)			7	50 DO 4	44			o		МН	
				188.07									
8		Hard, becoming stiff at depth, heterogeneous, wet, grey clayey SILT, trace to some sand, trace to some gravel; TILL (CL-ML)		7.32	8	50 DO	76			0			
9					9	50 DO	52			0			
.5		CONTINUED NEXT PAGE					ſ						
DE	PTH S	SCALE						Golder	•				I OGGED: SB IECKED: BLT

LOCATION: N 4848814.9 ;E 618935.8

SAMPLER HAMMER, 64kg; DROP, 760mm

RECORD OF BOREHOLE: Y-140

BORING DATE: November 3 - 6, 2006

SHEET 2 OF 4

DATUM: Geodetic

Ļ	ПОН	SOIL PROFILE			SA	MPLE	_	DYNAMIC PENETRA RESISTANCE, BLOW	11UN \ /S/0.3m く	HYDRAULIC k, cm/s	CONDUCTIVITY,	ĘĘ.	PIEZOMETER
METRES	BORING METHOD		STRATA PLOT		<u>ب</u>		J.3m	20 40	60 80		10 ⁻⁵ 10 ⁻⁴ 10	⊢ – – – – ü	OR
MET	5NING	DESCRIPTION	TAP	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.3m	SHEAR STRENGTH Cu, kPa	nat V. + Q - rem V. ⊕ U -	WATER			INSTALLATION
Ľ	BOR		STRA	(m)	۲ ۲	-	BLO			Wp			
		CONTINUED FROM PREVIOUS PAGE		1	\vdash		\dashv	20 40	60 80	10	20 30 4	0	1
10		Hard, becoming stiff at depth,		1	1		1						
		heterogeneous, wet, grey clayey SILT, trace to some sand, trace to some		1									
		gravel; TILL (CL-ML)											
11				}	10	50 DO	66			0		мн	
				1									Dec. 10, 2006
				1									
12				1									
				1									
				}	11	50 DO	35			0			
				1	1								
				1	\vdash								
13				1									
				1									
				1									
					\vdash								
14					12	50 DO	12				0		50 mm PVC Pipe
				1	[00	-						
	igers			1	\vdash								
	ars			180.69									
	Power Auger, O.D. 108 mm Augers Hollow Stem Augers	Compact to hard, wet, grey silty CLAY; (CL)		14.70									
15	0.D.												Hole Plug
	Hollow				\vdash	$\left \right $							
	wer 4				13	50 DO	14			⊩	a	мн	
	Ъ			1									
16				1	F	1							
				1									
				1									
					⊢								
17					14	50 DO	38			0			
				1									
					Γ								
				1									
18				1									
				1									
					\vdash	E0							
					15	50 DO	74			P	<u>† †</u>		
					⊢								
19				1									
		Hard, homogeneous, wet, grey CLAY;		176.14 19.25									
		(CH)	V///										
20				1	16	50 DO	89						
20		CONTINUED NEXT PAGE				1							
		<u> </u>		1	L								1
DEI	PTH S	CALE						Gold	``				LOGGED: SB
	50											0	HECKED: BLT

LOCATION: N 4848814.9 ;E 618935.8

SAMPLER HAMMER, 64kg; DROP, 760mm

RECORD OF BOREHOLE: Y-140

SHEET 3 OF 4 DATUM: Geodetic

BORING DATE: November 3 - 6, 2006

Щ,	THOD	SOIL PROFILE	—		S/	MPL	_	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	R ^A F	PIEZOMETER
UEPTIN SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)		ТҮРЕ	BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH nat V. + Q. ● Cu, kPa rem V. ⊕ U O	wp Or Wi	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
20		CONTINUED FROM PREVIOUS PAGE Hard, homogeneous, wet, grey CLAY; (CH)	-		16	50 DO	89			MH	
21		Very stiff to hard, heterogeneous, wet, grey silty CLAY, trace sand, trace gravel; TILL (CL)		174.59 20.80	17	50 DO	25		0		
22					18	50 DO	23		0	50 m	m PVC Pipe
24	Power Auger, O.D. 108 mm Augers Hollow Stem Augers				19	50 DO	50		0	Hole	Plug
26	Pow				20	50 DO	67		I C -I		
28		Thin layers of grey silt noted below 27.5 m depth.			21	50 DO	50		0		
29					22	50 DO	38		0	Sand	Pack
		CONTINUED NEXT PAGE									

LOCATION: N 4848814.9 ;E 618935.8

SAMPLER HAMMER, 64kg; DROP, 760mm

RECORD OF BOREHOLE: Y-140

BORING DATE: November 3 - 6, 2006

SHEET 4 OF 4

DATUM: Geodetic

LE L	DOH.	SOIL PROFILE	1.		S/	AMPL		DYNAMIC PENETRA RESISTANCE, BLOV	ION S/0.3m	Ì.	HYDRAULIC CO k, cm/s	UNDUCTIVITY,	2gk	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD		STRATA PLOT	ELEV.	К		BLOWS/0.3m	20 40		80	10-6 10		ADDITIONAL LAB. TESTING	OR
ME	RING	DESCRIPTION	ATA	DEPTH		TYPE	/SMC	SHEAR STRENGTH Cu, kPa	nat V. + rem V. ⊕	Q - ● U - O			VDDI 7B. T	INSTALLATION
Ľ,	BOF		STR/	(m)	Ĭ	ľ	BLC	20 40	60 8	30		0 30 40	≤ ⊐	
		CONTINUED FROM PREVIOUS PAGE		1	1	1			T				1	
30		Very stiff to hard, heterogeneous, wet, grey silty CLAY, trace sand, trace gravel;												
		TILL (CL)		1										
					23	50 DO	32					0		
31														Sand Pack
				163.8	9									
		Hard, heterogeneous, wet, grey silty CLAY; (CL)		31.5	0									
32	ş													
	Auger				24	50 DO	37				H	— — ——————————————————————————————————	мн	
	108 mm Augers	0 10 10 10												
	0.D. 108			1									1	
33	Auger, O.D. 108 mm Hollow Stem Augers			162.2	9								1	
	Power Auger, Hollow	CLAY, trace sand, trace gravel; (TILL)		33.1	0								1	
	Pow	(CL)		1										3.0 m Screen
						50								
34				1	25	50 DO	38					0	1	
				1	\vdash	-								
				1										
35				1	\vdash	-								50 mm Well
					26	50 DO	30					0		
				159.7										
		END OF BOREHOLE		35.6										
36		NOTES:												
		1. Monitoring well installed at 35.05 m depth (Elev. 160.34 m).												
				1									1	
		Water level measurements		1										
37		Date Depth (m) Elev (m) On completion 1.45 193.94												
0.		10/11/06 10.43 184.96 14/11/06 11.15 184.24												
		10/12/06 11.12 184.27												
38				1									1	
				1										
39														
				1									1	
40														
40														
	יידם						<u> </u>				, I I			
DE	r i H	SCALE						Gold	r					.ogged: SB Hecked: Blt

RECORD OF BOREHOLE: Y-141

SHEET 1 OF 4 DATUM: Geodetic

LOCATION: N 4848864.6 ;E 618920.5

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: October 30, 31, November 1, 2006

Ц	БŌ	SOIL PROFILE	_		SA	MPL	ES	DYNAMIC PENETRA RESISTANCE, BLOV	TION \ /S/0.3m v	$\langle \rangle$	HYDRAULI k, cr	C CONDUCTIVITY	· _	9 PIEZOMETER
METRES	BORING METHOD		STRATA PLOT		ĸ		1.3m	20 40	60 80	`	10 ⁻⁶	10 ⁻⁵ 10 ⁻⁴	10 ³	E OR
MET	SING	DESCRIPTION	TA P	ELEV. DEPTH	NUMBER	ТҮРЕ	BLOWS/0.3m	SHEAR STRENGTH Cu, kPa	nat V. + Q rem V. ⊕ U	}-● -0		R CONTENT PERC	ENT	الله STANDPIPE المن INSTALLATION
5	BOF		STR/	(m)	ľ		BLO	20 40	60 80	-	Wp 🛏 10	0 30	-∎WI ₹ 40	2
_		GROUND SURFACE	1	196.93										Flush mount protective casing
0		ASPHALT		0.00										Concrete
		Compact, heterogeneous, moist, brown sand and gravel; FILL (SW)												
		Loose, heterogeneous, moist, brown sand, trace gravel, trace silt; FILL (SP)		196.17 0.76										
1		sand, trace gravel, trace silt; FILL (SP)			1	50 DO	6				0			
		Stiff to very stiff, heterogeneous, moist,		195.49 1.45										
		Stiff to very stiff, heterogeneous, moist, brown and grey clayey SILT, trace sand, trace gravel, trace organics; FILL				50	10							
2		(CL-ML)			2	50 DO	12							50 mm PVC Pipe
					3	50 DO	15				0			
3														
					4	50 DO	17				0			
					-									
4					5	50 DO	9					0		
	SIS													
	Power Auger, O.D. 108 mm Augers Hollow Stem Augers													
	Auger, O.D. 108 mm Hollow Stem Augers				6	50 DO	18					0		
5	D.D. 11 Stem 4				0	DO	10							
	uger, (Hole Plug
	wer A													
	Ч													
6														
					7	50 DO	12				0			
7														
ŕ		Hard, heterogeneous, moist to wet, grey		189.77 7.17										
		clayey SILT, trace sand, trace gravel; TILL (CL-ML)												
					_									
_					8	50 DO	63				d–	4		
8						50								
]										
				1										
				1										
9				1										
				1										
				1	9	50 DO	85				0		∧	1H
				1	_									
10			_ 1141	4	L-	\mid	_		+			-+	· + -	
		CONTINUED NEXT PAGE												
DE	HIY	SCALE						Gold	er					LOGGED: SB

RECORD OF BOREHOLE: Y-141

SHEET 2 OF 4 DATUM: Geodetic

LOCATION: N 4848864.6 ;E 618920.5

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: October 30, 31, November 1, 2006

DESCRIPTION - CONTINUED FROM PREVIOUS PAGE — ard, heterogeneous, moist to wet, grey ard, heterogeneous, wet, grey silty LAY; (CL)	STRATA STRATA STRATA STRATA STRATA		10 000 000 000 000 000 000 000 000 000	BLG	20 40 60 80 SHEAR STRENGTH nat V. + Q. ● Cu, kPa 00 60 80 20 40 60 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 ⁶ 10 ⁶ 10 ⁴ 10 ³ WATER CONTENT PERCENT Wp 0 ^W WI 10 20 30 40	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
ard, heterogeneous, moist to wet, grey ayey SILT, trace sand, trace gravel; ILL (CL-ML) ard, heterogeneous, wet, grey silty		185.28			20 40 60 80			 Nov. 14, 2006
ard, heterogeneous, moist to wet, grey ayey SILT, trace sand, trace gravel; ILL (CL-ML) ard, heterogeneous, wet, grey silty		185.28	10 50 DO	70		0		 Nov. 14, 2006
ILL (CL-ML) ard, heterogeneous, wet, grey silty		185.28	10 50 DO	70		0		 Nov. 14, 2006
ard, heterogeneous, wet, grey silty LAY; (CL)		185.28 11.65		1				
								50 mm PVC Pipe
			11 50 DO	92		0	МН	
ard, moist, grey silty CLAY, trace sand, ace gravel; TILL (CL)		<u>183.78</u> 13.15						
		-	12 50 DO	88		Ð1		
			_					Hole Plug
		_	13 DO	100		0		
			14 50	92				
		-	15 DO	105		0		
			16 DO	88	+	╂──┝──┼──┝──┼─╴	-	
				1 I				1
	E	CONTINUED NEXT PAGE						

RECORD OF BOREHOLE: Y-141

SHEET 3 OF 4

BORING DATE: October 30, 31, November 1, 2006

DATUM: Geodetic

LOCATION: N 4848864.6 ;E 618920.5 SAMPLER HAMMER, 64kg; DROP, 760mm

DESCRIPTION CONTINUED FROM PREVIOUS PAGE Hard, moist, grey silty CLAY, trace sand, trace gravel; TILL (CL) Hard, heterogeneous, wet, grey silty CLAY; (CL)		. ,	z	QG TYPE 8 BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH Cu, kPa nat V. + Q - ● rem V. ⊕ U - O 20 40 60 80	10 ⁶ 10 ⁵ 10 ⁴ 10 ³ WATER CONTENT PERCENT Wp	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
Hard, moist, grey silty CLAY, trace sand, trace gravel; TILL (CL) Hard, heterogeneous, wet, grey silty		176.03	16					
Hard, moist, grey silty CLAY, trace sand, trace gravel; TILL (CL) Hard, heterogeneous, wet, grey silty		176.03	16	50 DO 88			1	
Hard, heterogeneous, wet, grey silty CLAY; (CL)		176.03 20.90	1					
			17	50 DO 62		0	мн	
Hard, heterogeneous, moist, grey silty		<u>174.63</u> 22.30						50 mm PVC Pipe
CLAY, trace sand, trace gravel; TILL (CL)		-	18	50 DO 61		0		
		-	19	50 DO 63		0		Hole Plug
			20	50 DO 67		0		
			21	50 DO 35		o		
Thin layers of grey silt noted below 29.0 m depth		-	22	50 DO 85		I —⊖I		
			-+				-	Sand Pack
	Hard, heterogeneous, moist, grey silty CLAY, trace sand, trace gravel; TILL (CL) Thin layers of grey silt noted below 29.0 m depth CONTINUED NEXT PAGE	Thin layers of grey silt noted below 29.0 m depth	Thin layers of grey silt noted below 29.0 m depth	18 19 19 20 21 7 Thin layers of grey silt noted below 29.0 m depth 22 CONTINUED NEXT PAGE	118 50 61 119 50 63 20 50 63 21 50 67 21 50 67 21 50 63 21 50 85 20 50 85 20 50 85 20 50 85 20 50 85 CONTINUED NEXT PAGE 1 1	18 50 61 19 50 63 19 50 67 10 50 67 11 50 67 11 50 67 11 50 66 11 50 66 12 50 66 12 50 66 12 50 66 12 50 66 13 14 14 14 14 14 15 14 14 16 14 14 17 15 14 18 14 14 19 15 14 10 14 14 14 14 14 15 14 14 16 14 14 17 15 14 18 14 14 19 14 14 14 14 14 14 14 14	11 00 61 12 00 63 13 00 63 14 00 63 15 0 0 16 0 0 17 0 0 18 0 0 19 00 63 19 00 63 19 00 63 19 00 63 10 0 0 11 00 63 11 00 63 11 00 63 11 00 63 12 00 65 12 00 85 12 00 85 12 00 85 13 14 14 14 15 14 15 14 14 16 14 14 17 14 14 18 14 14 14 14 14	11 12 00 61 0 10 00 63 0 0 10 00 63 0 0 10 00 63 0 0 11 10 10 10 0 0 11 10 10 10 0 0 11 10 10 10 0 0 12 10 10 10 10 0 12 10 10 10 10 0 12 10 15 10 10 10 12 10 15 10 10 10 12 10 15 10 10 10 12 10 15 10 10 10 12 10 15 10 10 10 13 10 10 10 10 10 14 10 10 10 10 10 15 10 10 10 <t< td=""></t<>

RECORD OF BOREHOLE: Y-141

SHEET 4 OF 4 DATUM: Geodetic

LOCATION: N 4848864.6 ;E 618920.5

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: October 30, 31, November 1, 2006

DEPTH SCALE METRES BORING METHOD	L DESCRIPTION 0 CONTINUED FROM PREVIOUS PAGE Hard, heterogeneous, moist, grey silty A	STRATA PLOT	ELEV.	щ		ε		۱.	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³	NZ NZ	PIEZOMETER OR
30	CONTINUED FROM PREVIOUS PAGE	≤ .	DEPTH	NUMBER	TYPE	BLOWS/0.3m	20 40 60 80 I I I SHEAR STRENGTH nat V. + 0 Cu, kPa rem V. ⊕ 0		WATER CONTENT PERCENT	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
		STR	(m)	Ŋ		BLO	20 40 60 80		Wp	ΓA	
		1179									1.44
	CLAY, trace sand, trace gravel; TILL (CL)			23	50 DO	69			0		50 mm PVC Pipe
8 8 Power Auger, O.D. 108 mm Augers Hollow Shore, Augors	Auger, o. D.: No mm Augers Hollow Stem Augers			24	50 DO	42			o		
Jawod 34	Jamo -			25	50 DO	63			0		3.0 m Screen
35	Hard, heterogeneous, wet, grey silty CLAY; (CL)		<u>162.43</u> 34.50 161.42	26	50 DO	93			⊢ —⊖I	MH	50 mm Well
36	END OF BOREHOLE NOTES: 1. Monitoring well installed at 35.05 m depth (Elev. 161.88 m). Water level measurements		35.51								_
37	Date Depth (m) Elev (m) On completion 6.1 190.83 3/11/06 9.3 187.63 10/11/06 10.43 185.64 14/11/06 11.15 185.48										
38											
38 39 40 DEPTH 1:50											
40											

LOCATION: N 4849983.9 ;E 618521.5

RECORD OF BOREHOLE: Y-142

SHEET 1 OF 4 DATUM: Geodetic

BORING DATE: October 25 - 27, 2006

ų I	ДОН	SOIL PROFILE	_	SA	MPLE	s	DYNAMIC PENETRATION	HYDRAULIC CONDUCTIVITY, k, cm/s	ĘF	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	ELEV.	NUMBER	TYPE	BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH nat V. + Q - € Cu, kPa rem V. ⊕ U - C	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
_≥	BORIN		DEPTH (m)	NN		BLOW		wp Or Wi	ADI	INGTALLATION
0		GROUND SURFACE	202.94				20 40 60 80			Flush mount protective casing
0		TOPSOIL Stiff to hard, heterogeneous, moist, brown clayey SILT, some sand, trace gravel; TILL (CL-ML)	0.00	1	50 DO	13		0		Concrete
1				2	50 DO 1	18		0		
			X X X X X X X X	3	50 DO 2	26		0		
2		Changing to grey at 2.3 m depth								50 mm PVC Pipe
		Changing to grey at 2.3 in depth		4	50 DO 2	20		φ		
3				5	50 DO	14		0		
4				6	50 DO 3	34		0		
	mm Augers gers				50					 Nov. 14, 2006
5	Power Auger, O.D. 108 mm Augers Hollow Stem Augers			7	50 DO	33			МН	Hole Plug
6	Po				50					
				8	50 DO (57		0		
7										
8				9	50 DO 3	30		0		
		Dense to compact, heterogeneous, wet, grey SAND with silt, trace clay; (SM)	194.33 8.61							
9				10	50 DO 3	37		ο		
10		CONTINUED NEXT PAGE				_		+		

RECORD OF BOREHOLE: Y-142

SHEET 2 OF 4 DATUM: Geodetic

LOCATION: N 4849983.9 ;E 618521.5

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: October 25 - 27, 2006

- F	ДОН	SOIL PROFILE	1.		SA	MPLE	_	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	μŞ	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	20 40 60 80 ` SHEAR STRENGTH nat V. + Q Q Cu, kPa V. ⊕ U O 20 40 60 80 0 O SHEAR STRENGTH	10 ⁶ 10 ⁵ 10 ⁴ 10 ³ WATER CONTENT PERCENT Wp	ADDITIONAL LAB. TESTING	STANDPIPE
10		CONTINUED FROM PREVIOUS PAGE									
11		Dense to compact, heterogeneous, wet, grey SAND with silt, trace clay; (SM)			11	50 DO	36		Φ	мн	50 mm PVC Pipe Hole Plug
12					12	50 DO	23		0		Sand Pack
14	3 mm Augers Jgers				13	50 DO	13		0		
15	Power Auger, O.D. 108 mm Augers Hollow Stem Augers			186.71	14	50 DO	24		0	мн	2.0 m Screen
17		Compact, heterogeneous, wet, grey SAND and GRAVEL, trace silt; (SW)		16.23	15	50 DO	24		0		50 mm Well
18		Hard, heterogeneous, moist to wet, grey silty CLAY, trace sand, trace gravel; TILL (CL)		185.19 17.76	16	50 DO (70/ 0.15		0		
20 -					17	50 DO 0	104/ 0.15		• • • • • • • • • • • • • • • • • • • •		
DEF		CALE				1		Golder			OGGED: GD/SB IECKED: BLT

LOCATION: N 4849983.9 ;E 618521.5

SAMPLER HAMMER, 64kg; DROP, 760mm

RECORD OF BOREHOLE: Y-142

SHEET 3 OF 4 DATUM: Geodetic

BORING DATE: October 25 - 27, 2006

DEPTH SCALE METRES	. BM DI		ю	ı 1		1 1 8	I 20 40					
	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE BLOWS/0.3m	20 40 SHEAR STRENGTH Cu, kPa 20 40	60 80 nat V. + Q - ● rem V. ⊕ U - O 60 80	WATER C	0 ⁻⁵ 10 ⁴ 10 ³ ONTENT PERCENT OW W 20 30 40	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
20 -		CONTINUED FROM PREVIOUS PAGE Hard, heterogeneous, moist to wet, grey silty CLAY, trace sand, trace gravel; TILL (CL)			- 10	50 78						
22						50 78 DO 0.1			0			
24	mm Augers Jers					50 160 DO 0.2			0			
25 26	Power Auger, U.D. 108 mm Hollow Stem Augers	Hard, homogeneous, wet, grey CLAY; (CH)		<u>177.60</u> 25.35	21	50 DO 42				F-G	MH	
27 28		Hard, heterogeneous, wet, grey silty CLAY, trace sand, trace gravel; TILL (CL)		175.97 26.98	22	50 DO 85				0		
29					23	50 DO 72			0			
30 -										† +-		

RECORD OF BOREHOLE: Y-142

BORING DATE: October 25 - 27, 2006

SHEET 4 OF 4

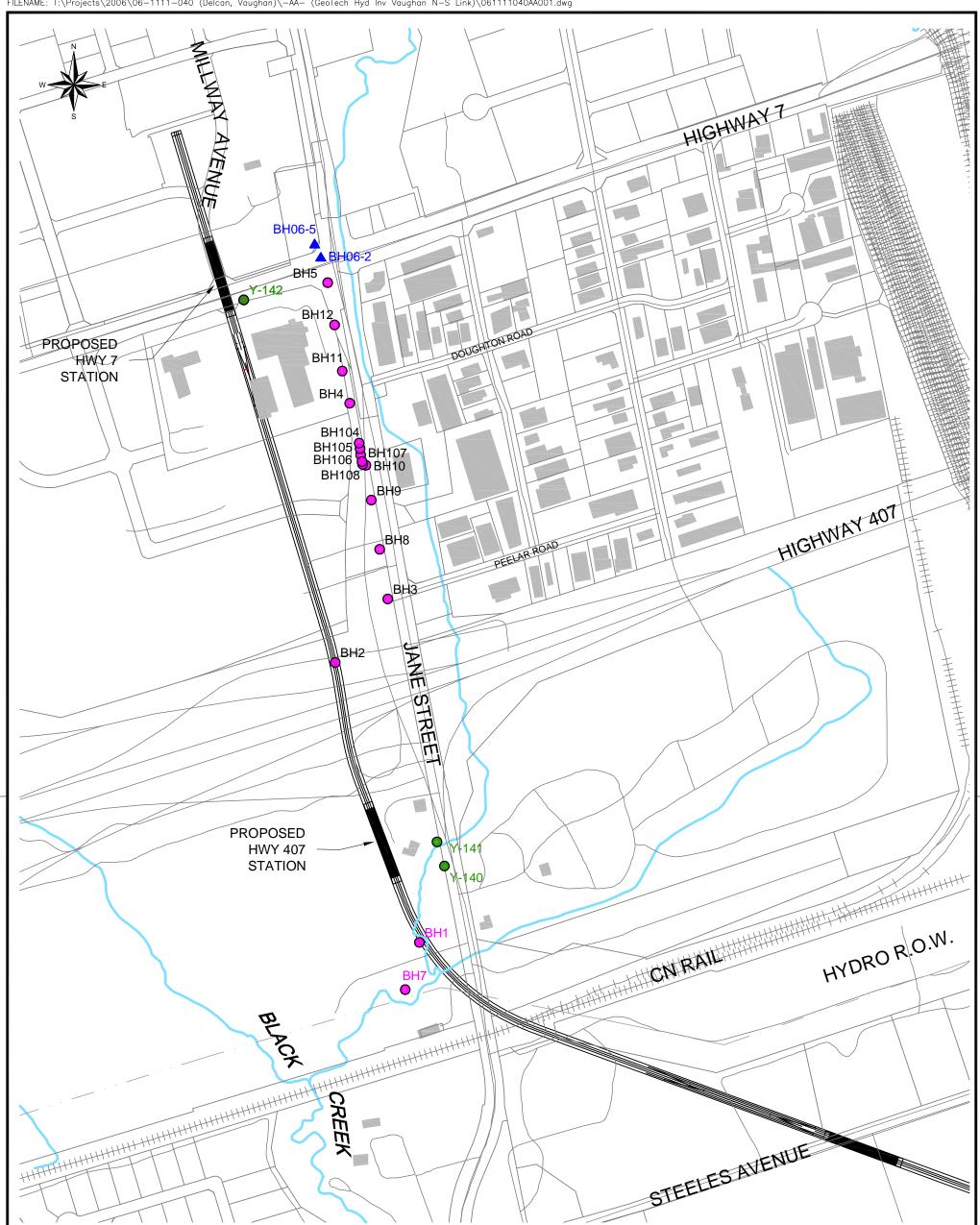
DATUM: Geodetic

LOCATION: N 4849983.9 ;E 618521.5 SAMPLER HAMMER, 64kg; DROP, 760mm

Ľ,	JOH.	SOIL PROFILE	.		SA	MPLI		DYNAMIC PENI RESISTANCE,	BLOW	6/0.3m	Ľ,		AULIC C k, cm/s		,		RGA	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD		STRATA PLOT		ĸ		BLOWS/0.3m	20 4			80	10			1	0 ⁻³	ADDITIONAL LAB. TESTING	OR STANDPIPE
Ť₽	RING	DESCRIPTION	ATA F	ELEV. DEPTH	NUMBER	TYPE	/SM	SHEAR STREN Cu, kPa	GTH	nat V. + rem V. €	- Q - 🔴 U - O	W			PERCE	NT	B. T.	INSTALLATION
วี	BOF		STR/	(m)	ž		BLC				80	vvp			30 4	WI 10	< ⊐	
		CONTINUED FROM PREVIOUS PAGE					\neg		-	Ĩ			- 4				$\neg \uparrow$	
30		Hard, heterogeneous, wet, grey silty CLAY, trace sand, trace gravel; TILL (CL)					1				1							
		ULATI, WALE SAILU, WALE YIAVEI, TILL (UL)			24	50 DO	71							0				
				172.31	24	DO	1											
Ī		END OF BOREHOLE		172.31 30.63														
31		NOTES:																
		1. Monitoring well installed at 16.76 m																
		depth (Elev. 186.18 m).																
		Water level measurements																
		Date Depth (m) Elev (m) On completion 0 202.94																
32		On completion 0 202.94 3/11/06 4.3 198.64 10/11/06 4.4 198.54																
		10/11/06 4.4 198.34 14/11/06 4.8 198.14																
33																		
34																		
35																		
36																		
37																		
38																		
39																		
40																		
-																		
		1						B ASS			1	•		ı	1			
DEF	PTH S	SCALE							144	-							LO	GGED: GD/SB

Project Code: Project Name: Date Tested: 06-1111-040 York Consortium/Vaughan Link EA/Vaughan November, 2006

1	SUMMARY	OF WAT	ER CONTE	ENT AND	ATTERBE	RG LIMIT	S
Borehole No.	Sample No.	Depth (m)	Elevation (m)	Water Content		tterberg Lim	
				(%)	LL	PL	PI
	1	1.1	194.3	9.0%			
	2	1.8	193.6	14.2%			
	3	2.6	192.8	14.2%			L
	4	3.4	192.0	10.8%			
	5	4.1	191.3	9.4%			
	6	4.9	190.5	23.7%		Organics	
	7	6.4	189.0	11.4%	Non-F	Plastic, Non-	Liquid
	8	7.9	187.5	13.5%			
	9	9.4	185.9	13.3%			
	10	11.0	184.4	14.4%			
	11	12.5	182.9	12.8%			
	12	14.0	181.4	25.7%			
V 440	13	15.5	179.8	23.5%	24.3	15.8	8.5
Y-140	14	17.1	178.3	16.9%			
	15	18.5	176.9	16.3%	31.5	15.8	15.7
	16	20.0	175.3	18.5%			
	17	21.6	173.7	27.1%			
	18	23.2	172.2	26.2%			
	19	24.6	170.8	21.6%			
	20	26.1	169.2	18.3%	24.7	16.1	8.6
	21	27.7	167.7	21.4%			
	22	29.3	166.1	24.0%			
	23	30.8	164.6	22.8%			
	24	32.3	163.1	25.7%	30.6	16.4	14.2
	25	33.8	161.6	27.5%			
	26	35.4	160.0	27.7%	[


Project Code: Project Name: Date Tested: 06-1111-040 York Consortium/Vaughan Link EA/Vaughan November, 2006

	SUMMARY	OF WAT	ER CONTI	ENT AND /	ATTERBE	RG LIMITS	5
Borehole No.	Sample No.	Depth (m)	Elevation (m)	Water Content		tterberg Limit	
NO.			(11)	(%)	LL	PL	PI
	1	1.1	195.9	4.1%			
	2	1.8	195.1	15.5%			
	3	2.6	194.3	13.4%			
	4	3.4	193.6	13.1%			
	5	4.1	192.8	17.5%			
	6	4.9	192.1	16.6%			
	7	6.4	190.5	14.3%			
	8	7.9	189.0	9.2%	17.3	10.7	6.6
	9	9.4	187.5	9.3%			
	10	10.9	186.0	14.8%			
	11	12.4	184.5	14.7%			
	12	13.9	183.0	17.0%	31.6	16.2	15.4
Y-141	13	15.5	181.5	15.5%			
1-141	14	17.0	179.9	17.4%			
	15	18.5	178.4	15.3%			
	16	20.0	176.9	16.2%			
	17	21.6	175.4	16.9%	32.3	16.8	15.5
	18	23.1	173.8	19.2%			
	19	24.6	172.3	17.1%			
	20	26.1	170.8	16.9%			
	21	27.7	169.2	30.7%			
	22	29.2	167.7	24.3%	26.1	15.8	10.3
	23	30.6	166.3	17.5%			
	24	32.3	164.6	20.6%			
	25	33.7	163.3	25.2%			
	26	35.2	161.7	24.8%	26.6	16.3	10.3

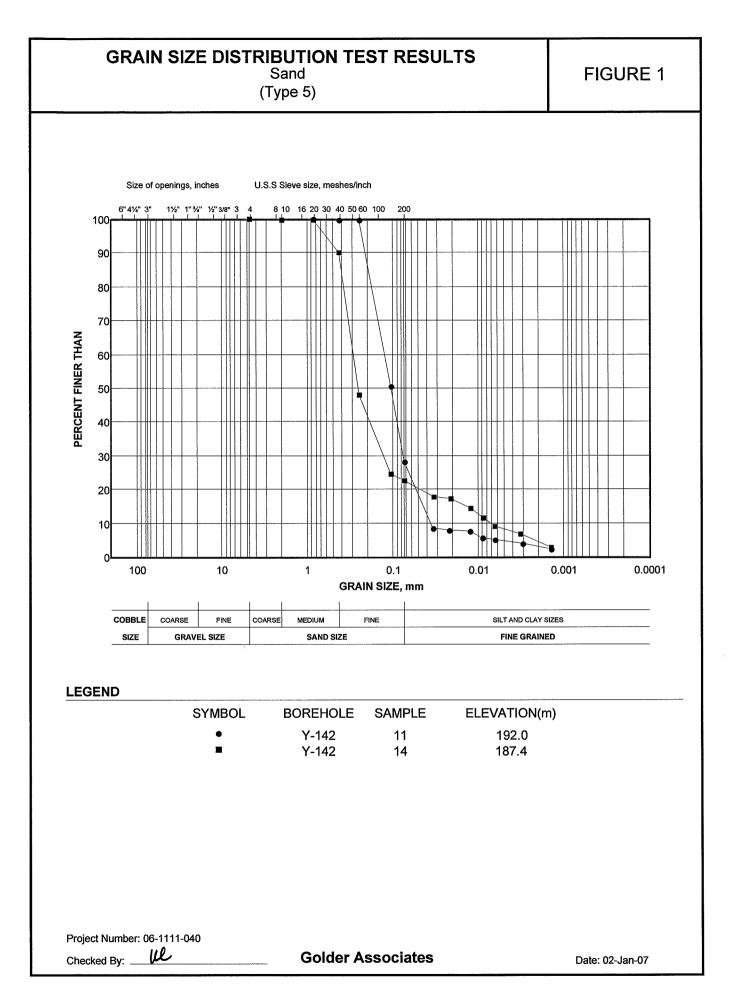
Project Code: Project Name: Date Tested: 06-1111-040 York Consortium/Vaughan Link EA/Vaughan November, 2006

	SUMMARY	OF WAT	ER CONTI	ENT AND	ATTERBE	RG LIMITS	5
Borehole No.	Sample No.	Depth (m)	Elevation (m)	Water Content	¢	tterberg Limi	ts
140.			(11)	(%)	LL	PL	PI
	1	0.2	202.9	14.8%		Organics	
	2	1.1	202.9	13.2%			
	3	1.8	202.9	13.0%			
	4	2.5	202.9	20.2%			
	5	3.3	202.9	11.8%			
	6	4.0	202.9	11.6%			
	7	4.8	202.9	10.9%	21.0	13.0	8.0
	8	6.3	202.9	10.7%			
	9	7.9	202.9	15.4%			
	10	9.4	202.9	19.5%		Free Water	
	11	10.9	202.9	20.2%			
Y-142	12	12.4	202.9	22.4%			
1-142	13	13.9	202.9	23.3%		Free Water	
	14	15.5	202.9	16.8%			
	15	17.0	202.9	8.7%			
	16	18.5	202.9	12.3%			
	17	19.9	202.9	9.7%			
	18	21.5	202.9	17.7%			
	19	23.0	202.9	12.1%			
	20	24.8	202.9	15.2%			-
	21	26.2	202.9	29.1%	56.4	23.1	33.3
	22	27.7	202.9	21.9%			
	23	29.2	202.9	17.9%			
	24	30.3	202.9	21.9%			

PLOT DATE: December 27, 2006 FILENAME: T:\Projects\2006\06-1111-040 (Delcan, Vaughan)\-AA- (GeoTech Hyd Inv Vaughan N-S Link)\061111040AA001.dwg

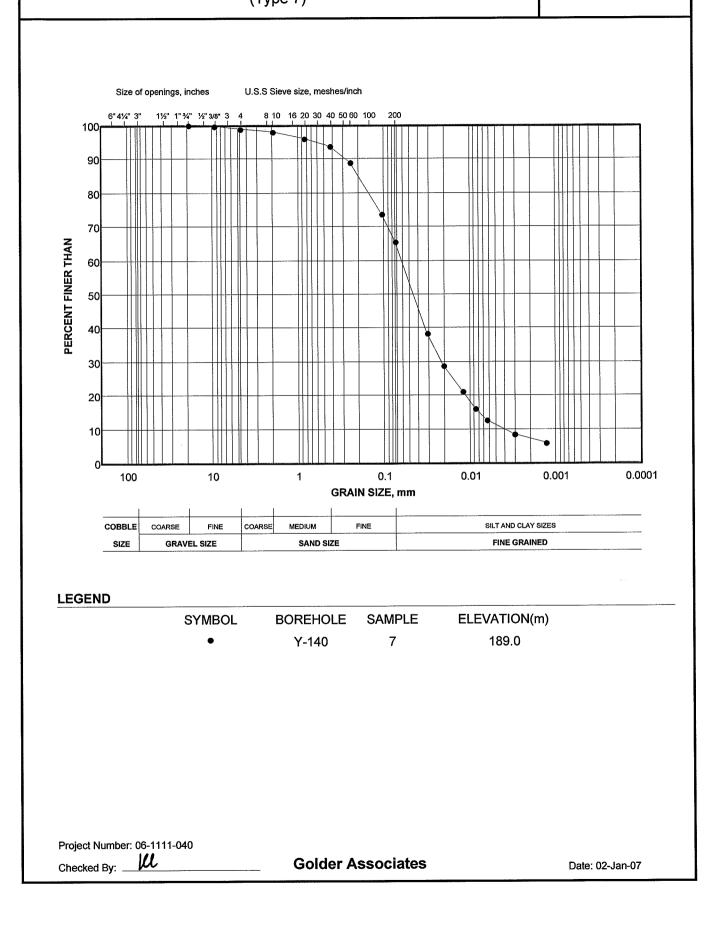
NOTES:

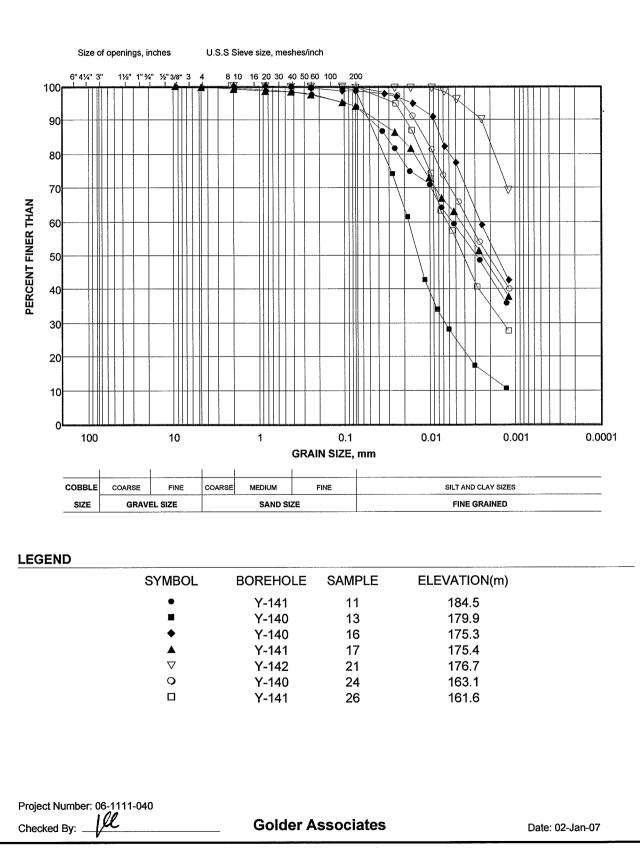
1. PROJECTION IS UTM NAD83, ZONE 17.

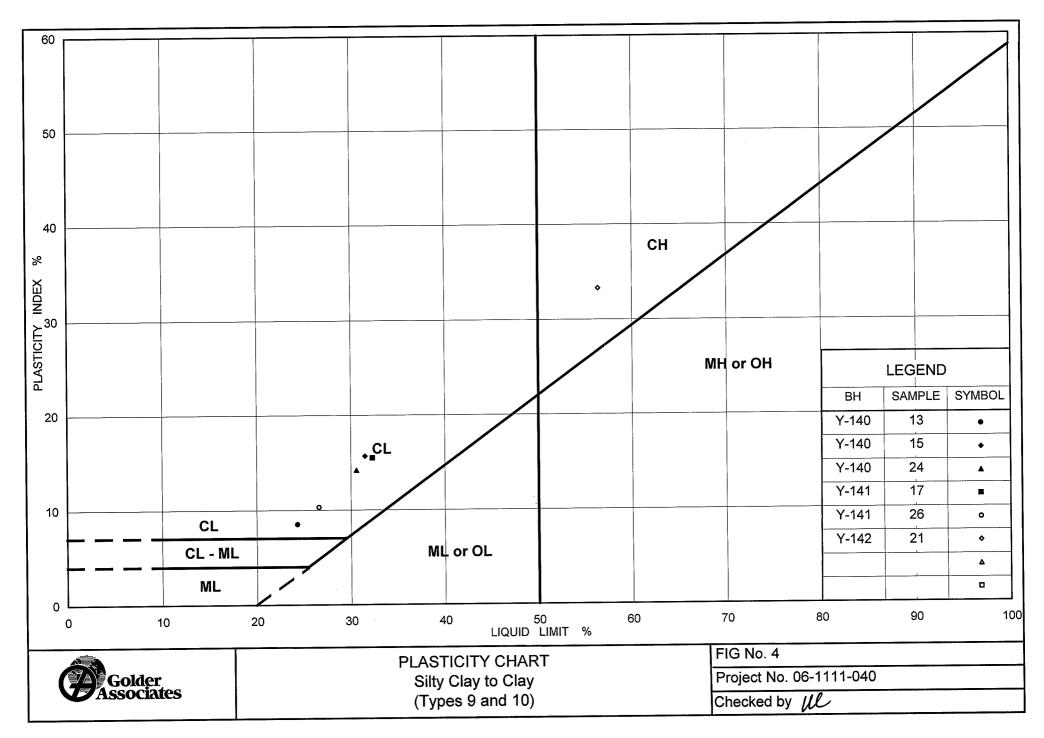

2. BASE MAPPING PROPOSED ALIGNMENT AND STATION LOCATIONS ARE AS PROVIDED BY YORK CONSORTIUM DATED DECEMBER 5, 2006.

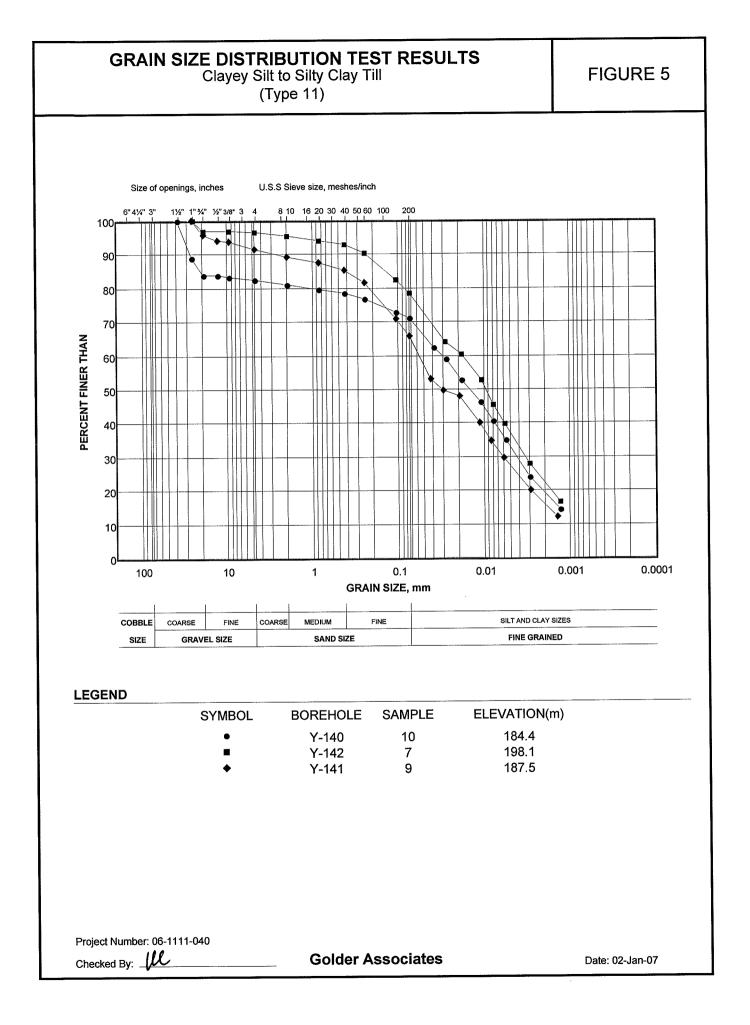
LEGEND:

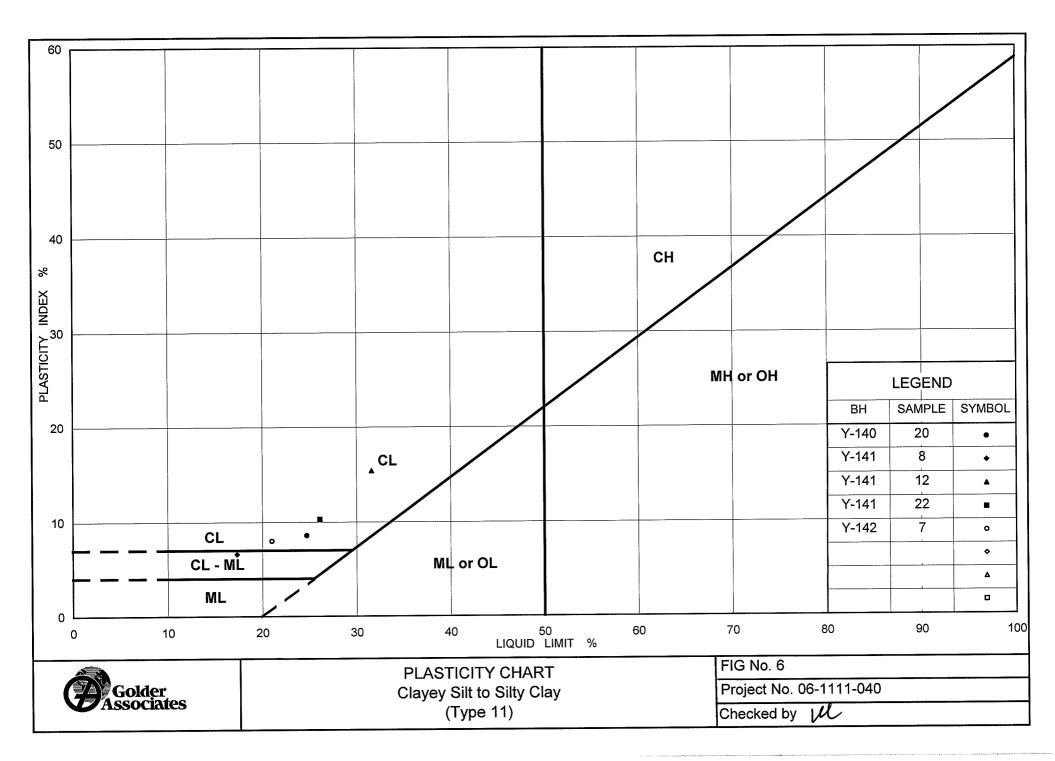
- BOREHOLES (GOLDER 2006)
- EXISTING BOREHOLES (GOLDER 1980's)
- EXISTING BOREHOLES (BY OTHERS 2006)

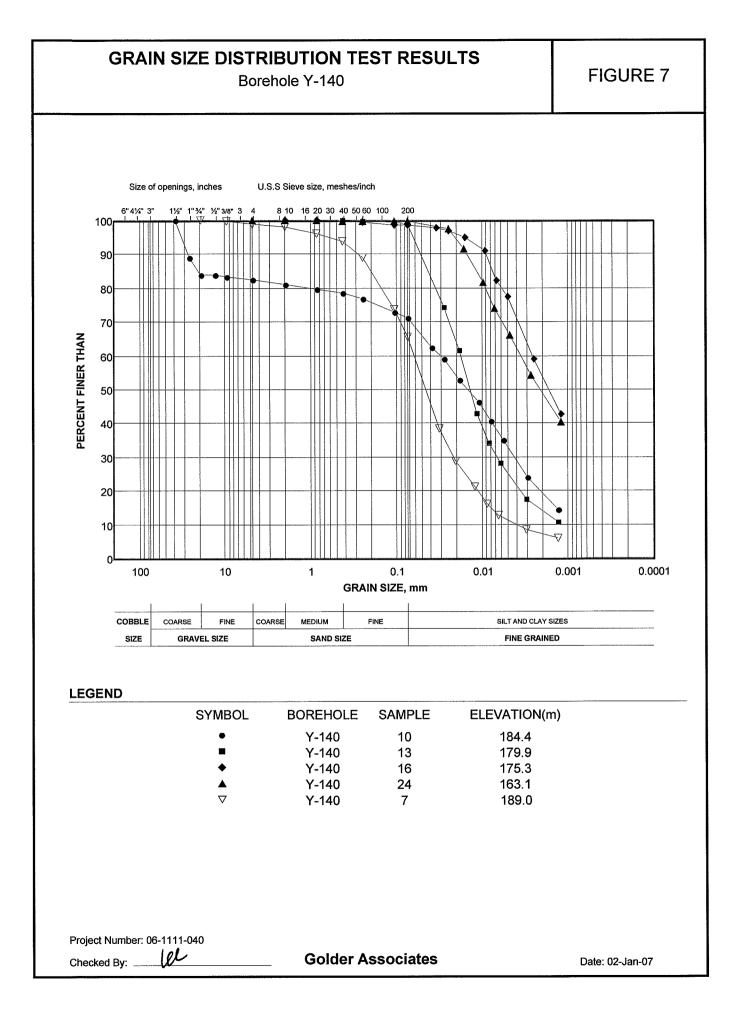

Golder	SCALE AS SHOWN DATE DEC. 14, 2006 DESIGN	BOREHOLE LOCATION PLAN	
	CAD MSM		
FILE No. 061111040AA001.dwg	CHECK BLT	VAUGHAN NORTH-SOUTH LINK	DRAWING NO.
PROJECT No. 06-1111-040 REV.	REVIEW SJB		1

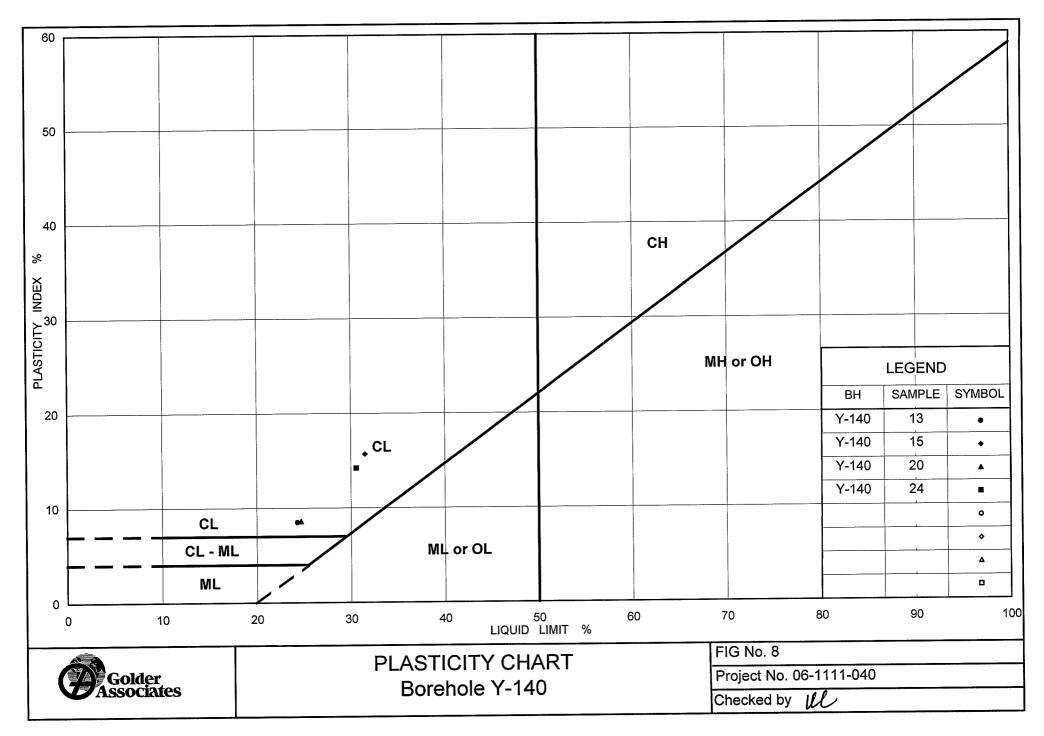

(Type 7)

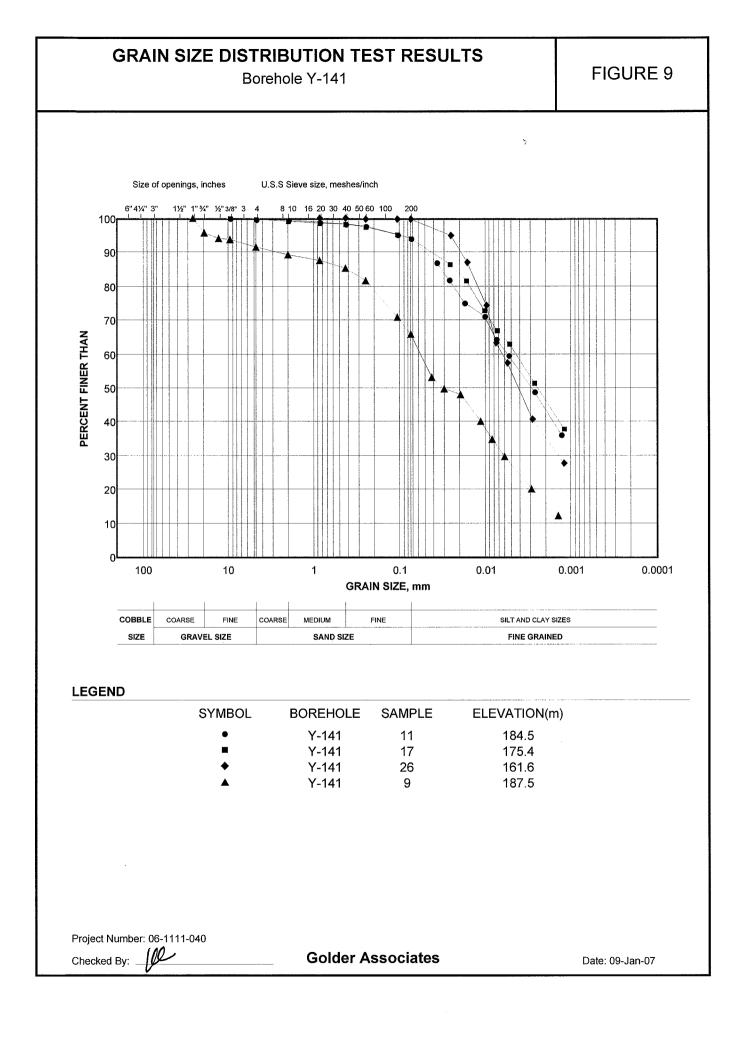

FIGURE 2

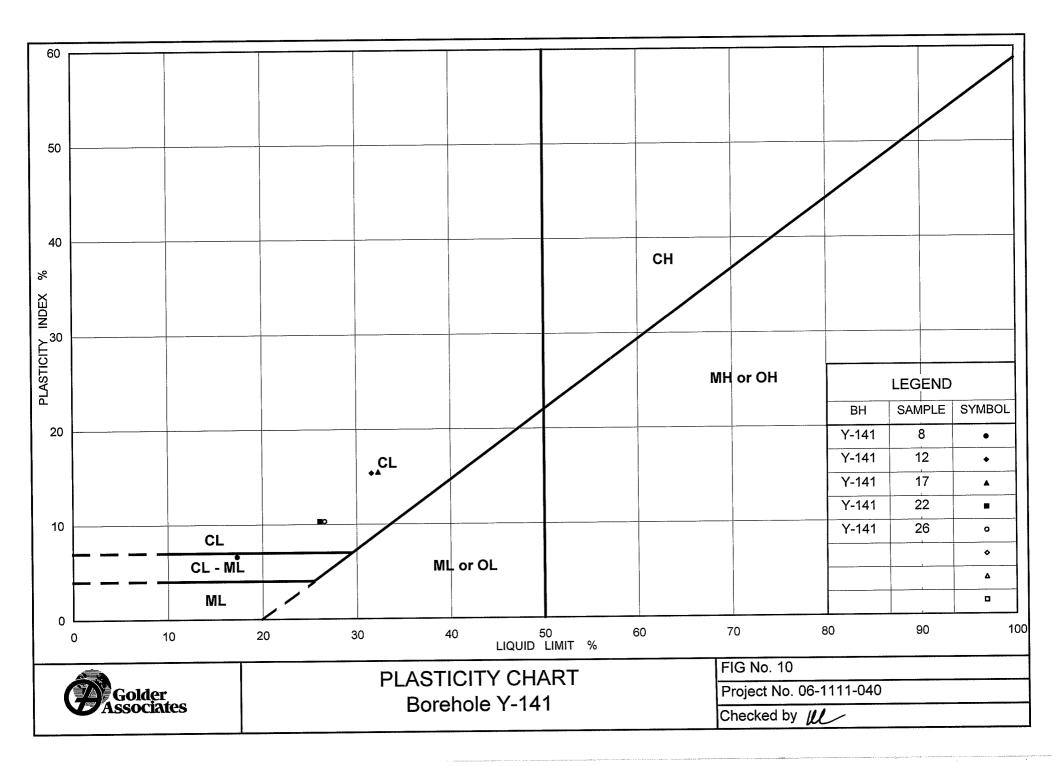


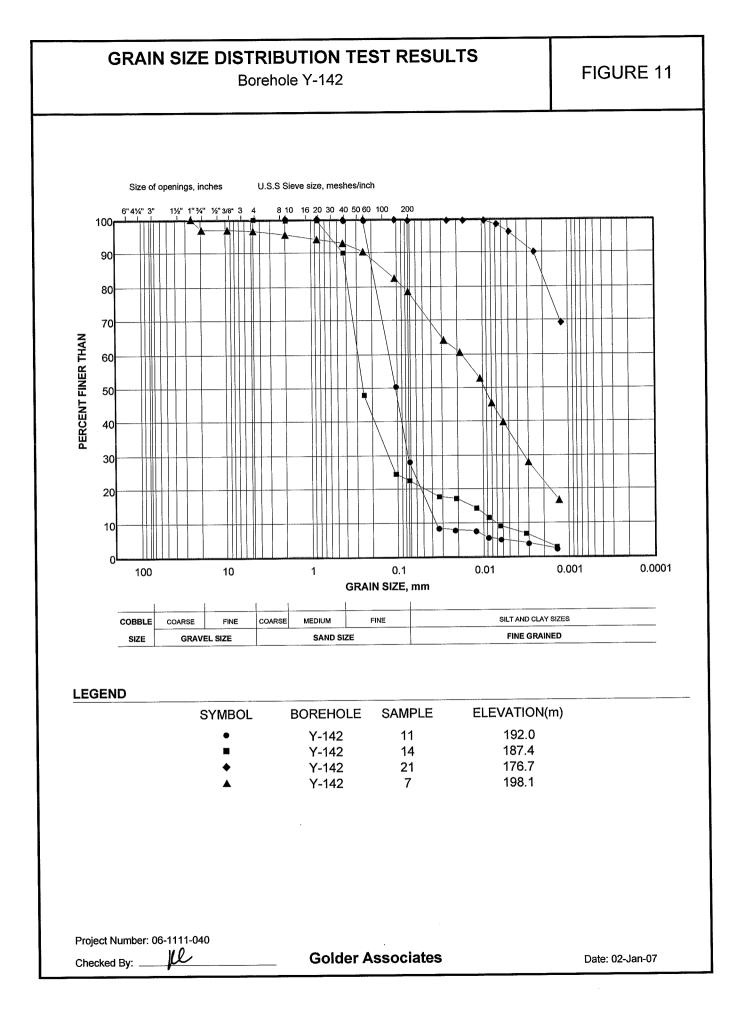

GRAIN SIZE DISTRIBUTION TEST RESULTS

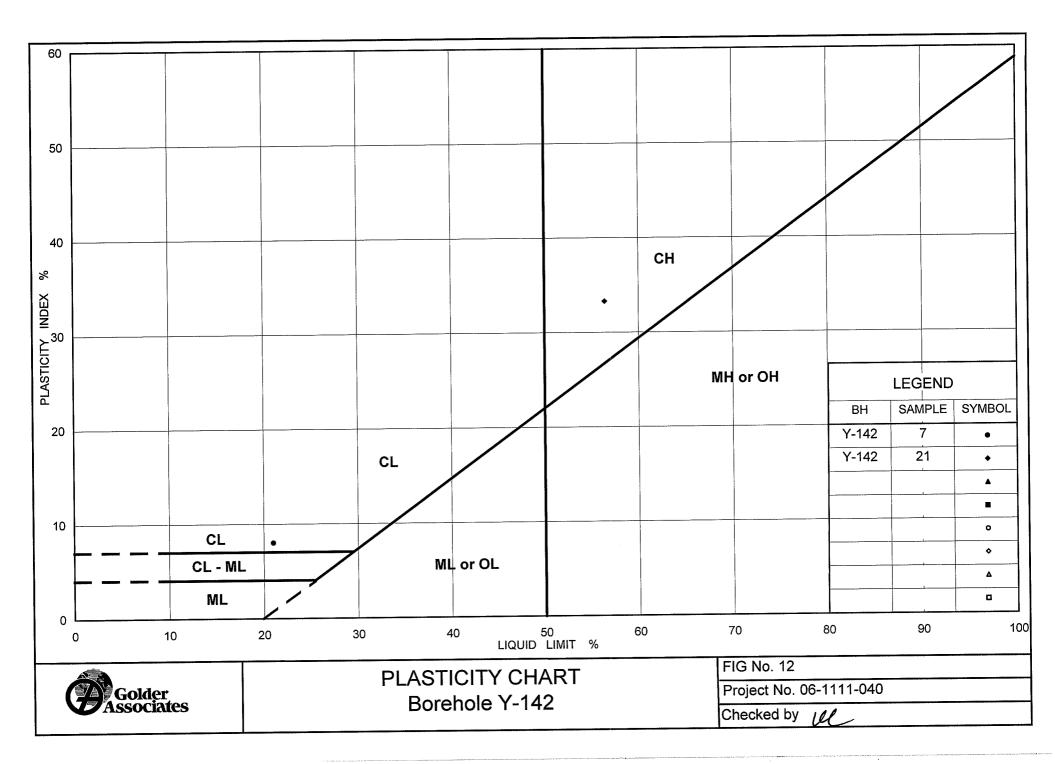

Silty Clay to Clay (Types 9 and 10) **FIGURE 3**











January 2007

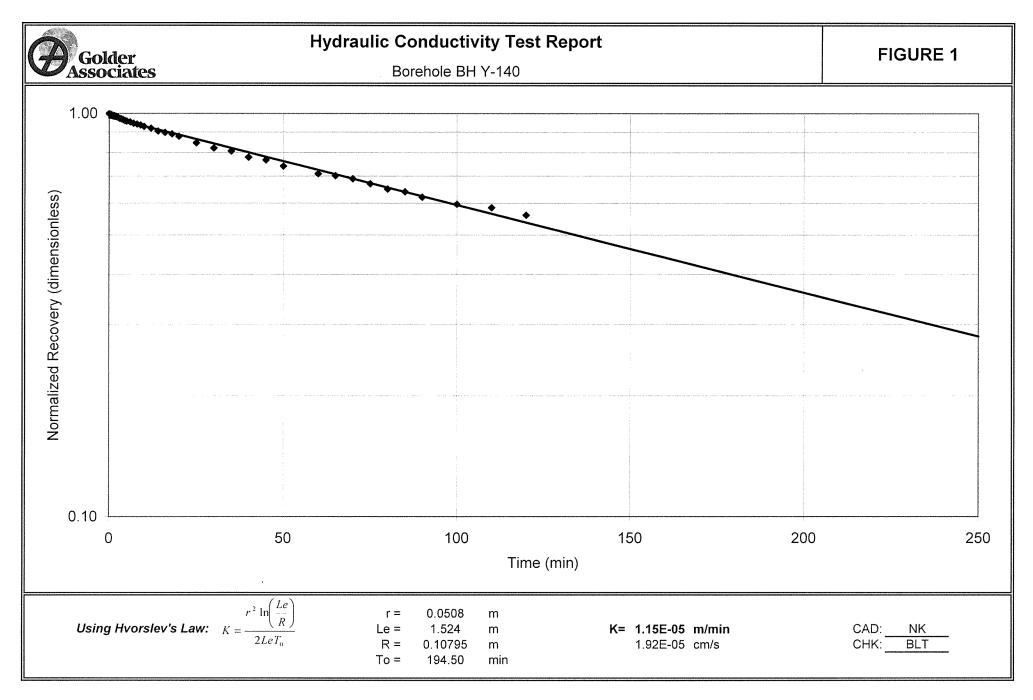
ATTACHMENT 1

RISING HEAD TESTS RECORDS AND CALCULATIONS (BOREHOLES Y-140 TO Y-142)

Project Code:06-1111-040Project Name:York Consortium/Vaughan Link EA/VaughanBorehole:Y-140

Test Date :	Nov. 12, 2006	
Elevation :	195.39 m	
Well Installation :	35.05 m depth	(Elevation 160.34 m)
S	ilty Clay Till (Borehole	material symbol 11)

Static Water Level = <u>10.76</u> m


H = <u>184.63</u> m

Ho = <u>180.54</u> m

Δt (min)	Reading (m BGS)	h	H-h/H-Ho
0	14.85	180.54	1.00
0.5	14.83	180.56	1.00
1	14.81	180.58	0.99
1.5	14.80	180.59	0.99
2	14.78	180.61	0.98
2.5	14.77	180.62	0.98
3	14.74	180.65	0.97
3.5	14.73	180.66	0.97
4	14.71	180.68	0.97
4.5	14.69	180.70	0.96
5	14.68	180.71	0.96
6	14.66	180.73	0.95
7	14.63	180.76	0.95
8	14.61	180.78	0.94
9	14.59	180.80	0.94
10	14.56	180.83	0.93
12	14.52	180.87	0.92
14	14.46	180.93	0.90
16	14.43	180.96	0.90
18	14.40	180.99	0.89
20	14.35	181.04	0.88
25	14.22	181.17	0.85
30	14.12	181.27	0.82
35	14.06	181.33	0.81
40	13.95	181.44	0.78
45	13.90	181.49	0.77
50	13.79	181.60	0.74
60	13.66	181.73	0.71
65	13.63	181.76	0.70
70	13.58	181.81	0.69
75	13.50	181.89	0.67
80	13.42	181.97	0.65
85	13.38	182.01	0.64
90	13.30	182.09	0.62
100	13.20	182.19	0.60
110	13.15	182.24	0.58
120	13.05	182.34	0.56
1051.5	11.10	184.29	0.08

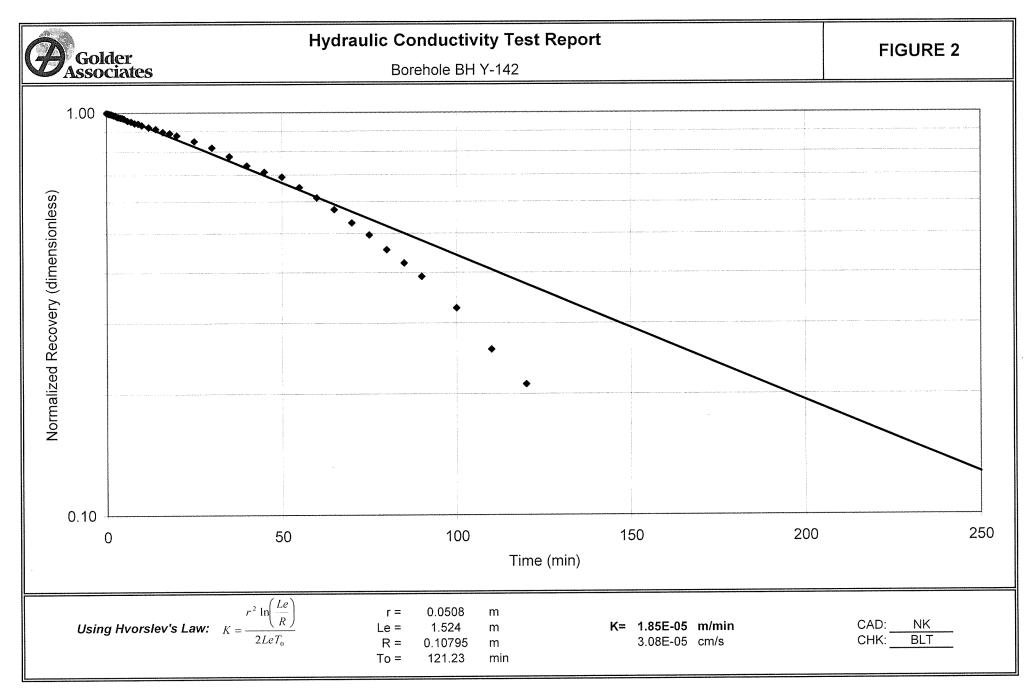
Refer to Figure 1 for hydraulic conductivity value

point not included in analysis

Project Code:06-1111-040Project Name:York Consortium/Vaughan Link EA/VaughanBorehole:Y-142

Test Date :	Nov. 12, 2006	
Elevation :	202.94 m	
Well Installation :	16.76 m depth	(Elevation 186.18m)
	Sand (Borehole material	symbol 5)

m


Static Water Level = _____4.6

H = <u>198.34</u> m Ho = <u>193.84</u> m

∆t (min)	Reading (m BGS)	h	H-h/H-Ho
0	9.10	193.84	1.00
0.5	9.08	193.86	1.00
1	9.07	193.87	0.99
1.5	9.06	193.88	0.99
2	9.04	193.90	0.99
2.5	9.03	193.91	0.98
3	9.00	193.94	0.98
3.5	8.99	193.95	0.98
4	8.98	193.96	0.97
4.5	8.97	193.97	0.97
5	8.95	193.99	0.97
6	8.90	194.04	0.96
7	8.88	194.06	0.95
8	8.84	194.10	0.94
9	8.83	194.11	0.94
10	8.79	194.15	0.93
12	8.74	194.20	0.92
14	8.70	194.24	0.91
16	8.63	194.31	0.90
18	8.60	194.34	0.89
20	8.55	194.39	0.88
25	8.42	194.52	0.85
30	8.28	194.66	0.82
35	8.10	194.84	0.78
40	7.92	195.02	0.74
45	7.80	195.14	0.71
50	7.71	195.23	0.69
55	7.53	195.41	0.65
60	7.36	195.58	0.61
65	7.18	195.76	0.57
70	6.99	195.95	0.53
75	6.83	196.11	0.50
80	6.65	196.29	0.46
85	6.50	196.44	0.42
90	6.36	196.58	0.39
100	6.07	196.87	0.33
110	5.76	197.18	0.26
120	5.55	197.39	0.21
1209	4.76	198.18	0.04

Refer to Figure 2 for hydraulic conductivity value

point not included in analysis

ATTACHMENT 2

RESULTS OF WATER QUALITY TEST AND SOIL CHEMICAL TESTS

AGAT WORK ORDER: 06T196034 PROJECT NO: 06-1111-040

CLIENT NAME: GOLDER ASSOCIATES LTD.

ATTENTION TO: Beng Lay Teh

York Region Storm Sewer Use By-Law										
DATE SAMPLED: November 1	3 2006	DATE RE	CEIVED:	November 13 2006	DATE REPORTED:	November 21 2006	SAMPLE TYPE: Water			
	Unit	G/S	M.D.L.	Y-140 613727						
pH	N/A	6.0-9.0	N/A	8.10						
Total Suspended Solids	mg/L	15	12	95						
Biochemical Oxygen Demand	mg/L	15	5	13						
Ammonia as N	mg/L	1.0	0.05	1.02						
Total Phosphorus	mg/L	0.3	0.05	0.17						
Total Kjeldahl Nitrogen	mg/L	1.0	0.05	1.34						
Fluoride	mg/L	2	0.05	0.21						
Chloride	mg/L	500	0.10	274						
Sulphate	mg/L	500	0.10	102						
Total Antimony	mg/L	0.05	0.020	<0.020						
Total Arsenic	mg/L	0.001	0.001	0.003						
Total Aluminum	mg/L	1.0	0.020	2.04						
Total Bismuth	mg/L	0.05	0.010	<0.010						
Total Cadmium	mg/L	0.001	0.001	<0.001						
Total Chromium	mg/L	0.200	0.020	<0.020						
Total Cobalt	mg/L	0.050	0.020	<0.020						
Total Copper	mg/L	0.010	0.010	<0.010						
Total Iron	mg/L	1.0	0.050	2.57						
Total Lead	mg/L	0.050	0.020	<0.020						
Total Manganese	mg/L	0.200	0.020	0.274						
Total Mercury	mg/L	0.001	0.0002	<0.0002						
Total Molybdenum	mg/L	0.050	0.020	0.025						
Total Nickel	mg/L	0.050	0.015	<0.015						
Total Selenium	mg/L	0.100	0.020	<0.020						
Fotal Silver	mg/L	0.100	0.020	<0.020						
Total Tin	mg/L	0.100	0.025	<0.025						
Total Titanium	mg/L	0.050	0.020	0.068						
Total Vanadium	mg/L	0.050	0.020	<0.020						
Total Zinc	mg/L	0.050	0.020	0.045						

Comments: M.D.L. - Method Detection Limit; G / S - Guideline / Standard: Refers to York Storm

Certified By:

Jarby Takemehi

AGAT WORK ORDER: 06T194366 PROJECT NO: 06-1111-040

CLIENT NAME: GOLDER ASSOCIATES LTD.

ATTENTION TO: Beng Lay Teh

	ON Regulation 558 Metals and Inorganics										
DATE SAMPLED: October 03 20	06	DATE RE	CEIVED:	November 01 2006	DATE REPORTED: November 10 2006	SAMPLE TYPE: Soil					
				Hwy 407/Jane St.							
	Unit	G/S	M.D.L.	607975							
Arsenic Leachate	mg/L	2.5	0.010	<0.010							
Barium Leachate	mg/L	100	0.100	0.646							
Boron Leachate	mg/L	500	0.050	0.073							
Cadmium Leachate	mg/L	0.5	0.005	<0.005							
Chromium Leachate	mg/L	5	0.005	<0.005							
Lead Leachate	mg/L	5	0.007	<0.007							
Mercury Leachate	mg/L	0.1	0.005	<0.005							
Selenium Leachate	mg/L	1	0.010	<0.010							
Silver Leachate	mg/L	5	0.005	<0.005							
Uranium Leachate	mg/L	10	0.050	<0.050							
Fluoride Leachate	mg/L	150	0.05	0.21							
Cyanide Leachate	mg/L	20	0.05	<0.05							
Nitrate + Nitrite as N Leachate	mg/L	1000	0.70	<0.70							

Comments: M.D.L. - Method Detection Limit; G / S - Guideline / Standard: Refers to Regulation 558

607975 Cyanide Leachate is reported as Free Cyanide determined by Technicon Autoanalyser.

Certified By:

AGAT WORK ORDER: 06T194366 PROJECT NO: 06-1111-040

CLIENT NAME: GOLDER ASSOCIATES LTD.

ATTENTION TO: Beng Lay Teh

ON Regulation 558 PCBs										
DATE SAMPLED: October 03 200	06	DATE RE	CEIVED:	November 01 2006	DATE REPORTED: November 10 2006	SAMPLE TYPE: Soil				
	11.5	0 / 0	MD	Hwy 407/Jane St.						
Polychlorinated Biphenyls	Unit mg/L	G / S 0.3	M.D.L. 0.005	607975 <0.005						

Comments: M.D.L. - Method Detection Limit; G / S - Guideline / Standard: Refers to Regulation 558

607975 The soil sample was leached using the Regulation 558 procedure. Analysis was performed on the leachate. Results relate only to the items tested.

uboul-

AGAT WORK ORDER: 06T194366 PROJECT NO: 06-1111-040

CLIENT NAME: GOLDER ASSOCIATES LTD.

ATTENTION TO: Beng Lay Teh

ON Regulation 558 SVOCs									
DATE SAMPLED: October 03	2006	DATE RE	ECEIVED:	November 01 2006	DATE REPORTED: November 10 2006	SAMPLE TYPE: Soil			
	Unit	G/S	M.D.L.	Hwy 407/Jane St. 607975					
Pyridine	mg/L	5.0	0.010	<0.010					
Cresols	mg/L	200	0.012	<0.012					
Ortho-Cresol	mg/L	200	0.004	<0.004					
Meta & Para-Cresol	mg/L	200	0.008	<0.008					
Hexachloroethane	mg/L	3.0	0.004	<0.004					
Nitrobenzene	mg/L	2.0	0.004	<0.004					
Hexachlorobutadiene	mg/L	0.5	0.004	<0.004					
2,4,6-Trichlorophenol	mg/L	0.5	0.05	<0.05					
2,4,5-Trichlorophenol	mg/L	400	0.004	<0.004					
2,4-Dinitrotoluene	mg/L	0.13	0.004	<0.004					
2,3,4,6-Tetrachlorophenol	mg/L	10.0	0.004	<0.004					
Hexachlorobenzene	mg/L	0.13	0.004	<0.004					
Dinoseb	mg/L	1.0	0.004	<0.004					
Benzo(a)pyrene	mg/L	0.001	0.001	<0.001					

Comments: M.D.L. - Method Detection Limit; G / S - Guideline / Standard: Refers to Regulation 558

607975 The sample was leached according to Regulation 558 protocol. Analysis was performed on the leachate. Surrogate recovery for 2,4,6-Tribromophenol: 76%. Results relate only to the items tested.

uboul -

AGAT WORK ORDER: 06T194366 PROJECT NO: 06-1111-040

CLIENT NAME: GOLDER ASSOCIATES LTD.

ATTENTION TO: Beng Lay Teh

ON Regulation 558 VOCs										
DATE SAMPLED: October 03 200	06	DATE RE	ECEIVED:	November 01 2006	DATE REPORTED: November 10 2006	SAMPLE TYPE: Soil				
		0.10		Hwy 407/Jane St.						
-	Unit	G/S	M.D.L.	607975						
Vinyl Chloride	mg/L	0.2	0.030	<0.030						
1,1-Dichloroethene	mg/L	1.4	0.020	<0.020						
Dichloromethane	mg/L	5.0	0.030	<0.030						
Methyl Ethyl Ketone	mg/L	200	0.090	<0.090						
Chloroform	mg/L	10.0	0.020	<0.020						
1,2-Dichloroethane	mg/L	0.5	0.020	<0.020						
Carbon Tetrachloride	mg/L	0.5	0.020	<0.020						
Benzene	mg/L	0.5	0.020	<0.020						
Trichloroethene	mg/L	5.0	0.020	<0.020						
Tetrachloroethene	mg/L	3.0	0.010	<0.010						
Chlorobenzene	mg/L	8.0	0.010	<0.010						
1,2-Dichlorobenzene	mg/L	20	0.010	<0.010						
1,4-Dichlorobenzene	mg/L	0.5	0.010	<0.010						

Comments: M.D.L. - Method Detection Limit; G / S - Guideline / Standard: Refers to Regulation 558

607975 Surrogate Recovery for Toluene-d8: 96% Surrogate recovery for 4-Bromofluorobenzene: 93% Sample was prepared using Regulation 558 protocol and a zero headspace extractor. Results relate only to the items tested.

uboul -

AGAT WORK ORDER: 06T193211 PROJECT NO: 06-1111-040

CLIENT NAME: GOLDER ASSOCIATES LTD.

ATTENTION TO: Beng Lay Teh

	ON Regulation 558 Metals and Inorganics									
DATE SAMPLED: October 25 200	6	DATE RE	ECEIVED:	October 26 2006	DATE REPORTED: November 01 2006	SAMPLE TYPE: Soil				
	Unit	G/S	M.D.L.	HWY 7 603438						
Arsenic Leachate	mg/L	2.5	0.010	<0.010						
Barium Leachate	mg/L	100	0.100	1.24						
Boron Leachate	mg/L	500	0.050	0.053						
Cadmium Leachate	mg/L	0.5	0.005	<0.005						
Chromium Leachate	mg/L	5	0.005	<0.005						
Lead Leachate	mg/L	5	0.007	<0.007						
Mercury Leachate	mg/L	0.1	0.005	<0.005						
Selenium Leachate	mg/L	1	0.010	<0.010						
Silver Leachate	mg/L	5	0.005	<0.005						
Uranium Leachate	mg/L	10	0.050	<0.050						
Fluoride Leachate	mg/L	150	0.05	0.25						
Cyanide Leachate	mg/L	20	0.05	<0.05						
Nitrate + Nitrite as N Leachate	mg/L	1000	0.70	<0.70						

Comments: M.D.L. - Method Detection Limit; G / S - Guideline / Standard: Refers to Regulation 558

603438 Cyanide Leachate is reported as Free Cyanide determined by Technicon Autoanalyser.

Certified By:

Elizabeth Rolakowska

AGAT WORK ORDER: 06T193211 PROJECT NO: 06-1111-040

CLIENT NAME: GOLDER ASSOCIATES LTD.

ATTENTION TO: Beng Lay Teh

ON Regulation 558 PCBs										
DATE SAMPLED: October 25 2	DATE R	ECEIVED:	October 26 2006	DATE REPORTED: November 01 2006	SAMPLE TYPE: Soil					
	Unit	G/S	M.D.L.	HWY 7 603438						
Polychlorinated Biphenyls	mg/L	0.3	0.005	<0.005						

Comments: M.D.L. - Method Detection Limit; G / S - Guideline / Standard: Refers to Regulation 558

603438 The soil sample was leached using the Regulation 558 procedure. Analysis was performed on the leachate.

Results relate only to the items tested.

Certified By:

AGAT WORK ORDER: 06T193211 PROJECT NO: 06-1111-040

CLIENT NAME: GOLDER ASSOCIATES LTD.

ATTENTION TO: Beng Lay Teh

ON Regulation 558 SVOCs									
DATE SAMPLED: October 25 200	6	DATE RE	ECEIVED:	October 26 2006	DATE REPORTED: November 01 2006	SAMPLE TYPE: Soil			
	Unit	G/S	M.D.L.	HWY 7 603438					
 Pyridine	mg/L	5.0	0.010	<0.010					
Cresols	mg/L	200	0.012	<0.012					
Ortho-Cresol	mg/L	200	0.004	<0.004					
Meta & Para-Cresol	mg/L	200	0.008	<0.008					
Hexachloroethane	mg/L	3.0	0.004	<0.004					
Nitrobenzene	mg/L	2.0	0.004	<0.004					
Hexachlorobutadiene	mg/L	0.5	0.004	<0.004					
2,4,6-Trichlorophenol	mg/L	0.5	0.05	<0.05					
2,4,5-Trichlorophenol	mg/L	400	0.004	<0.004					
2,4-Dinitrotoluene	mg/L	0.13	0.004	<0.004					
2,3,4,6-Tetrachlorophenol	mg/L	10.0	0.004	<0.004					
Hexachlorobenzene	mg/L	0.13	0.004	<0.004					
Dinoseb	mg/L	1.0	0.004	<0.004					
Benzo(a)pyrene	mg/L	0.001	0.001	<0.001					

Certified By:

Comments: M.D.L. - Method Detection Limit; G / S - Guideline / Standard: Refers to Regulation 558

603438 The sample was leached according to Regulation 558 protocol. Analysis was performed on the leachate. Surrogate recovery for Chrysene-12: 69%. Results relate only to the items tested.

Jorky Takeweli

AGAT WORK ORDER: 06T193211 PROJECT NO: 06-1111-040

CLIENT NAME: GOLDER ASSOCIATES LTD.

ATTENTION TO: Beng Lay Teh

				ON Reg	ulation 558 VOCs	
DATE SAMPLED: October 2	5 2006	DATE RE	ECEIVED:	October 26 2006	DATE REPORTED: November 01 2006	SAMPLE TYPE: Soil
	Unit	G/S	M.D.L.	HWY 7 603438		
Vinyl Chloride	mg/L	0.2	0.030	<0.030		
1,1-Dichloroethene	mg/L	1.4	0.020	<0.020		
Dichloromethane	mg/L	5.0	0.030	<0.030		
Methyl Ethyl Ketone	mg/L	200	0.090	<0.090		
Chloroform	mg/L	10.0	0.020	<0.020		
1,2-Dichloroethane	mg/L	0.5	0.020	<0.020		
Carbon Tetrachloride	mg/L	0.5	0.020	<0.020		
Benzene	mg/L	0.5	0.020	<0.020		
Trichloroethene	mg/L	5.0	0.020	<0.020		
Tetrachloroethene	mg/L	3.0	0.010	<0.010		
Chlorobenzene	mg/L	8.0	0.010	<0.010		
1,2-Dichlorobenzene	mg/L	20	0.010	<0.010		
1,4-Dichlorobenzene	mg/L	0.5	0.010	<0.010		

Certified By:

Comments: M.D.L. - Method Detection Limit; G / S - Guideline / Standard: Refers to Regulation 558

603438

Surrogate Recovery for Toluene-d8: 106% Surrogate recovery for 4-Bromofluorobenzene: 104%

Sample was prepared using Regulation 558 protocol and a zero headspace extractor. Results relate only to the items tested.

Jorby Takewski

APPENDIX B

PREVIOUS BOREHOLE RECORDS

BOREHOLES 1 TO 12 – 1981 BY GOLDER ASSOCIATES LTD. BOREHOLES 104 TO 109 – 1985 BOREHOLES 06-2 AND 06-5 – 2006 BY OTHERS

)						F	ECOF		F B	ORE	HOLE	I				······································		
t	LOCATI	DN See Figure 2 R HAMMER WEIGHT		5 Kg	DR	OP -		ING DAT	E C	TULY PEI		31 ION TES	т намі		ATUM	GÉODE			
	<u> </u>	SOIL PROFILE		SAN				DYI	NAMIC P	ENETRA	TION	· .	COEF		OF PER		ITY, T	6	
BORING METHOD	ELEV'N.		PLOT	ER	ω	mero/SWOJB	CALE		STREN	 аты	L		ix WA	10 Ix	M. / SEC	10 Ix		ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE
BORING	DEPTH (m)	DESCRIPTION	STRAT. PLOT	NUMBER	TYPE	BLOW	ELEV	Cu.	+	191	at. v. • + Em.v. • ⊕ I	Q,-● U,-O	1	Wp H	ð	WL	0	ADDI LAB.	INSTALLATION.
							190												PROTECTIVE
	188.21	TOPSOIL	23	3						· .									O.S.
	0.21 186.96	COBBLES AND BOULDERS	@		50 ~~								0						
	AUGERS	COMPACT TO DENSE,	a		D.O.	57	•						0						
		COMPACT TO DENSE, OREY SANDY SILT WITH TRACE CLAY AND GRAVEL (TILL)	S	2	"	13	185	-				•		0					BACKFILL
AUGER BC	18 2.6B		0	3	a	100 m	n .						o						
	533 E			+	"									o					BENTONITE SEAL
8	Ĕ	VERY HARD, GREY	©	5	44 11	(18) (11								0 0					9
	2	CLAYEY SILT WITH TRACE SAND (TILL)		7	n	i43	- 180						×	0					GRANULAR 0
				8		94 62									0				9
	177.08	END OF HOLE		10		64									0				PIEZOMETER
•																			ELEVATION 186,91 ON SEPT 14,1981.
							175												
																	-		
	•																		
							170												
																		-	
								15-5-5			in at fai]]	I	<u> </u>	0844	и <u>рм</u> .
VE	RTICAL S	CALE 100 (MI	ETR	:IC)				G	older	Ass	òcia	tes						CHEC	KED_MT

11 A A		N See Figure 2 R HAMMER WEIGHT O. SOIL PROFILE			DRO		<u> </u>	DYI		NETRAT		N TEST			DF PERME	DRC		9	PIEZOMETER
	ELEV'N. DEPTH		5	œ		BLDWS/03m	ELEVATION SCALE		STRENG	TH NAT	, i	00 U0	WAT IAW		0 1x10 FENT, PE		1	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
TO T	(m)- <u>199,91</u> <u>0.34</u> (97,17 2.74 <u>182.</u> [7,	GROUND SURFACE TOPSOIL COMPACT, BROWN SILTY FINE SAND WITH TRACE CLAY AND FINE GRAVEL VERY STIFF TO VERY HARD, GREY CLAYEY SILT WITH TRACE SAND AND SOME FINE GRAVEL (TILL)					200 (9: 18	c											GRANULAR FILTER BACKFILL
	• • •						ļ	13 -						•					

ę.		SOIL PROFILE		SAN	MPL		z		NAMIC F			~	COEFFI	CIENT	OF PER	MEABIL	ІТΥ, Ţ	9 ZC	PIEZOMETE
BORING METHOD	ELEV'N DEPTH	DESCRIPTION	STRAT. PLOT	NUMBER	TYPE	meo/SMOIB	ELEVATIO	SHEAF Cu.	STREN	13	AT. V + EM.V 6		IX IO WATE	tx i	0 1x TENT, I			ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATI
Zomm Dut age ov steh Austra	(m) 199.)c 03.2 0.2	HARD CLAYEY SILT		3	50.m D.O		ц 200 (95 185 185 (20)						0	0	> .			2192	PROTECTIVE CAP
		2		× .						-									

UND SUMFACE			a a	ELEVATION SCALE	SHEAR Cù.	STRENG	STH NA RE	r v - + Mv - 9	0.• U•O	WAT	ER CON	D Ix [1 TENT, PI		ADDITIONAL LAB. TESTING	STANDPIRE
UND SUMFACE TABBOAND ALL S		50		200											tin yang tahun sa sasarah
E GREX SAND MI TO FINE NED WITH STONAL THIN RS OF FINE 20 AND SILT D OF HOLE			a 6 a 7 a 7	3) 2 7	9 55					G					APROTECTIVE
	H TO FINE ED WITH STONAL THIN 28 OF FINE EL AND SILTY	SIGREZ SAND ATTO HAND ATTO BODAL THIN TO HAND ATTO BODAL THIN TO OF FINE AND SILTT	SIGREY SAND TO THE EDUATE TRIP EDUATE TRIP EL AND SILTT OF MOLE		Signed	Image: Second	JIGMEY, SAND 100 100 MI TO WITHELED	AGREY SAND DOWL THIS STONE TO HIS STONE THIS STONE	SHORE SAND, STR STR STR ST	SIGRES SAND FOR FINE ED WATH SIDDAL TRIN TO FINE ED WATH SIDDAL TRIN TO FINE ED WATH SIDDAL TRIN TO FINE TO F	AGREX SAND A 1 15 CONT FINE EL AND SILTY A 10 A 1 17 A 10 A		ORE Y ISAND IS IS		

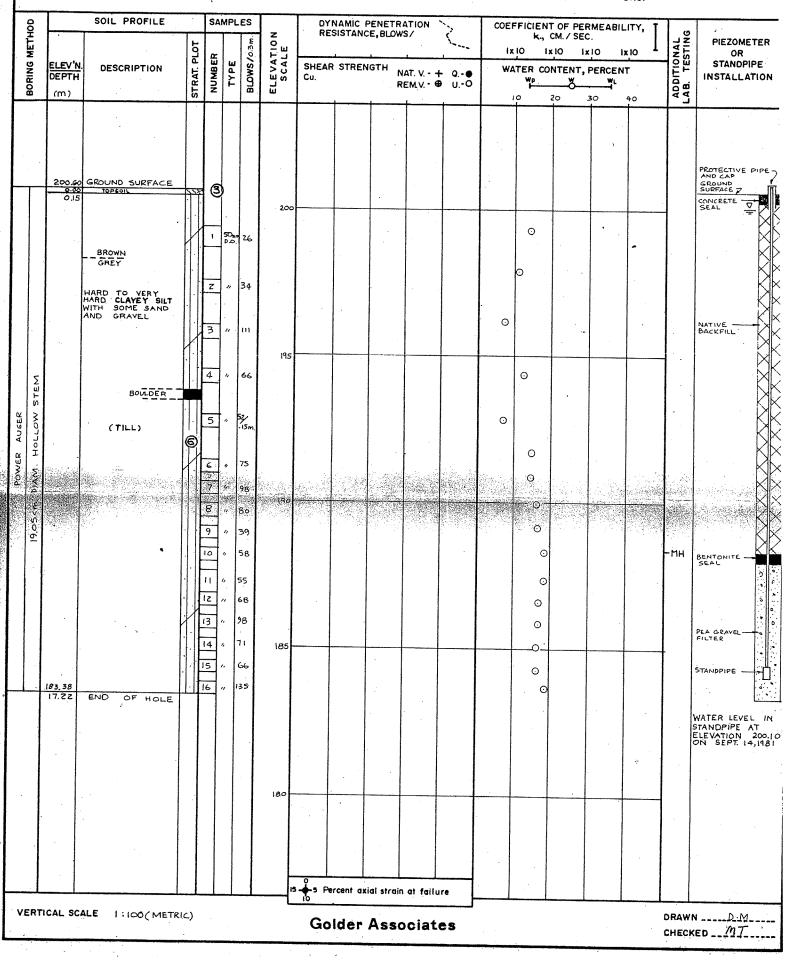
	METHOU	SAMPLE	R HAMMER WEIGHT		SAMP	PLES		DYA	AMIC PI	ENETRA E,BLOWS	TION	٤	IX	0 IX.I	1. / SEC. 0 1x 1	o Ix	10	IONAL	PIEZOMETER OR STANDPIPE
		DEPTH	DESCRIPTION	STRAT. PU	NUMBER	TYPE BIOWS/O	ELEVAT	SHEAR Cu.	STREN	GTH NA RE	τ.ν+ ΜνΦ	0,-● U-O		WP	<u> </u>			ADDIT LAB.	
	1	the second s		XX			20												Ø S. ♥
			(FILL) 3		1	0min 29													
														0 0					BACRFILL
3 3				<u> </u>	4		24	6						9				- mH	
Strandpuss Strandpuss O Strandpuss O Strandpuss <	BORING				6		16 12								0				
	R ADGER				01210		,3 _18	10							a final second				
Size 11 0 <t< td=""><td>B</td><td>e l</td><td>Solthe GRAVEL AN BILT, AND OCCUSION THIN LAVERS OF GRAVEL AND SILT SAND</td><td>Pri C</td><td></td><td></td><td>31</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>C</td><td></td><td></td><td></td><td>HI FILTER</td></t<>	B	e l	Solthe GRAVEL AN BILT, AND OCCUSION THIN LAVERS OF GRAVEL AND SILT SAND	Pri C			3 1								C				HI FILTER
USTRE STATES LEVE			53	NSE			30	185						100.00					
A CONTRACT OF HOLE WATER LEVE			ੂਯਾਜ਼, ਵਰੋਲਿੰਟ ਗਾਹੂ 																чн
		and the second data was set of the second data where the second data was not set of the second data with the secon						140											WATER LEVI STANDPIPE ELEVATION 2 ON SEPTE 1
	のないです。																		

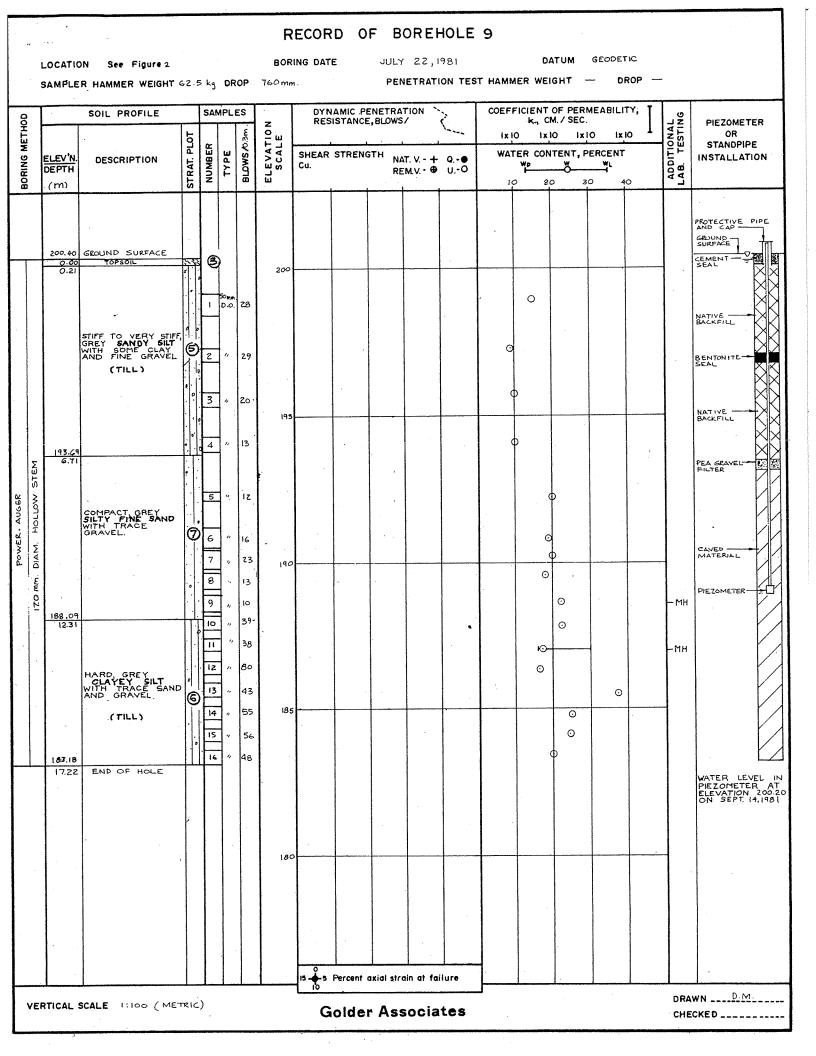
OP SUL PRUPIE SUMPES SUMPES Comparison Comparison <thcomparison< th=""> Comparison</thcomparison<>	x IO		
201.35 GROUND SURFACE 1 0.00 1		BACH	
20,35 GROUND SURFACE 1000 FIRM, BROWN-GREY 0 118.13 FIRM, BROWN-GREY 0 118.13 FIRM, BROWN-GREY 0 117.000 FIRM, BROWN-GREY 0 117.000 FIRM, BROWN-GREY 0 117.000 FIRM, BROWN-GREY 0 117.000 FIRM, BROWN-GREY 2 117.000 FIRM, BROWN-GREY 2 117.000 FIRM, BROWN-GREY 3 117.000 FIRM, BROWN-GREY 3 117.000 FIRM, BROWN-GREY 3 118 1 3 118 1 3 118 1 1 118 1 1 118 1 1 118 1 1 118 1 1 118 1 1 118 1 1 118 1 1 119 1 1 119		G. 9. G. 9. SEAL BACKI BACKI	
193.10 FIRM, BROWN-GREY CLAYEY SILT 1 50 5 199.13 2.20 0 0 0 199.13 2.20 0 0 0 199.13 2.20 0 0 0 199.13 2.20 0 0 0 199.13 7 1 3.2 1 19 17.00 7 1 3.2 0 0 199.13 7 1 3.2 0 0 199.14 1 3 1 9 0 0 199.15 1 3 1 9 0 0 199.16 1 1 1 1 1 1 199.10 1 1 1 1 1 1 199.10 1 1 1 1 1 1 199.10 1 1 1 1 1 1 199.10 1<		BACHT	
PIENT, BEROWN-GREY Doo 5 1 Doo 5 1 Doo 5 1 0 1 1 0 1 1 0 1 1 0 0 1 0 <td></td> <td>BENTO</td> <td></td>		BENTO	
198.13 3.20 VERY STUEF (GREY GREY SAMD AND GROUPS SAMD AND TRACE SAMD AND TRACE SAMDY SUT WITH SOME CLAY AND TRACE GRAVEL 3 1 52 193.10 1 3 1 52 193.12 1 3 1 52 193.12 1 3 1 52 193.12 1 3 1 52 193.12 1 5 1 4 193.12 1 5 1 4 0 1 1 1 1 0 1 1 1 1 1 193.12 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </td <td></td> <td></td> <td></td>			
3.20 Set of Minute 117.00 117.			
4.27 HARD, GREY 3 # 52 HARD, GREY SHUT, SCIERCULAT H # 56 HARD, GREY SHUT, SCIERCULAT H # HARD, GREY SHUT, SCIERCULAT H # HARD, GREY H # 56 HARD, GREY H # 56 HARD, GREY H # 56 HARD, GREY H # HARD, GREY H H H HARD, GREY H H H H H H H H H H<		BACKI	F144
HARD, GREY WITH SOME CLAY AND TRACE GRAVEL Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Image: Clay Hard Trace Gravel Imag		BACKI	FILL
193.10 (TILL) 1			×
193.10 1 5 1 4 0 0 1 4 4 0 7 1 10 0 7 1 10 0 7 1 10 0 7 1 10 0 7 1 10 0 7 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			ĸ
Image: Second			*
COMPACT CREY SAND WITH STAND WITH CATERS OF CAVIEX SILT AND COARSE SAND CONTRACT THIN CATERS OF CAVIEX SILT AND COARSE SAND COA		PIEZO	METER
SAND WITH SAND WITH OccASSIONAL THIN UAYERS OF CLAYER SILT AND COARSE DAND TO FINE GRAVEL (12 " 11 " IB " 9			
		SAND	FILL
		MH MH	
		-MH	
			•
185,63 15 " 20		-MH	BLEVE
185		PIEZO ELEVA ON S	R LEVE OMETER ATION 2 SEPT. 14
180	· · ·	-	

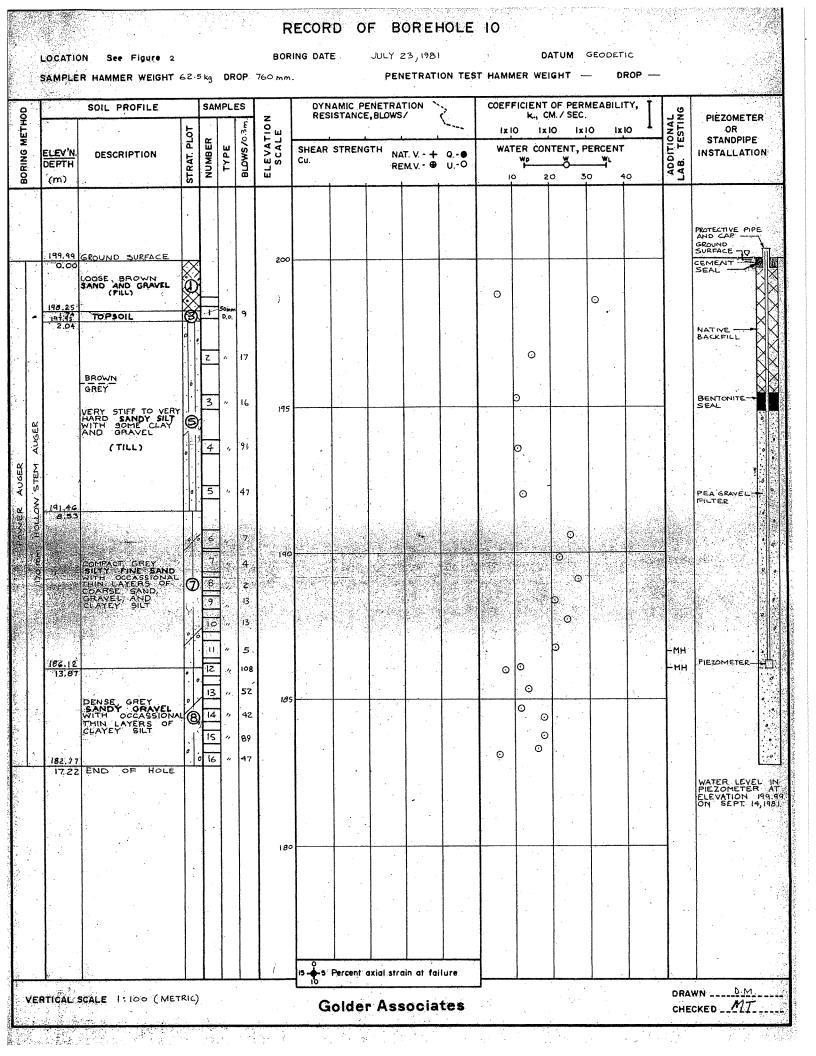
	76:09%	SOIL PROFILE		SAN	APLI	÷	z o	DY RE	NAMIC (SISTANC	ENETRA	TION >	8		k ., C	OF PERI M. / SEC.	ي جندي ر جا جنون ي	1973) 1979 - 1984	NAL	
DI	<u>EV'N</u> EPTH	DESCRIPTION	STRAT. PLOT	NUMBER	TYPE	CO/SMOTE	ELEVATION Scale	SHEAF Cu.	R STREM		AT. V + EM.V 9	Q.•● U.•O	WA"	البيدينة وأستنبه	ITENT, P			ADDITIONAL LAB. TESTING	STANDPIPE
																			PROTECTIVE CAP
の語言ななないである	8.00 0.15	GROUND SURFAC	Ē	8															G.S.T. CEMENT SEAL
統領による部門で行	<u>185-54</u> (.22			1	50 m	74	18							0 0					BACKFILL
		VERY HARD, GREY		3		69 86								0					
NAL TRIVEL AND AND		VERY HARD GREY CLAYEY SILT WITH TRACE SAND XND GRAVEL (TILL)	() I	•		79								⊙ - ⊢ _ ⊙					
であることである。				7 8 9		71 33 33	18	3							0				
ALL ADDRESS AND ADDRESS AND ADDRESS ADD	177. 6		0	-10		39									୍				PIEZOMETER
C. L.	9.60 	END OF HOUE			100														WATER LEVEL IN PIEZOMETER A ELEVATION 1781 ON SEPT 14,192
ないでいたいでしたいという					A CONTRACT OF		17	5											
A - C - C - C - C - C - C - C - C - C -																			
A State State																			
								15	5. Percen	t axial st	rain at fa	ilure							

RECORD OF BOREHOLE 8

BORING DATE

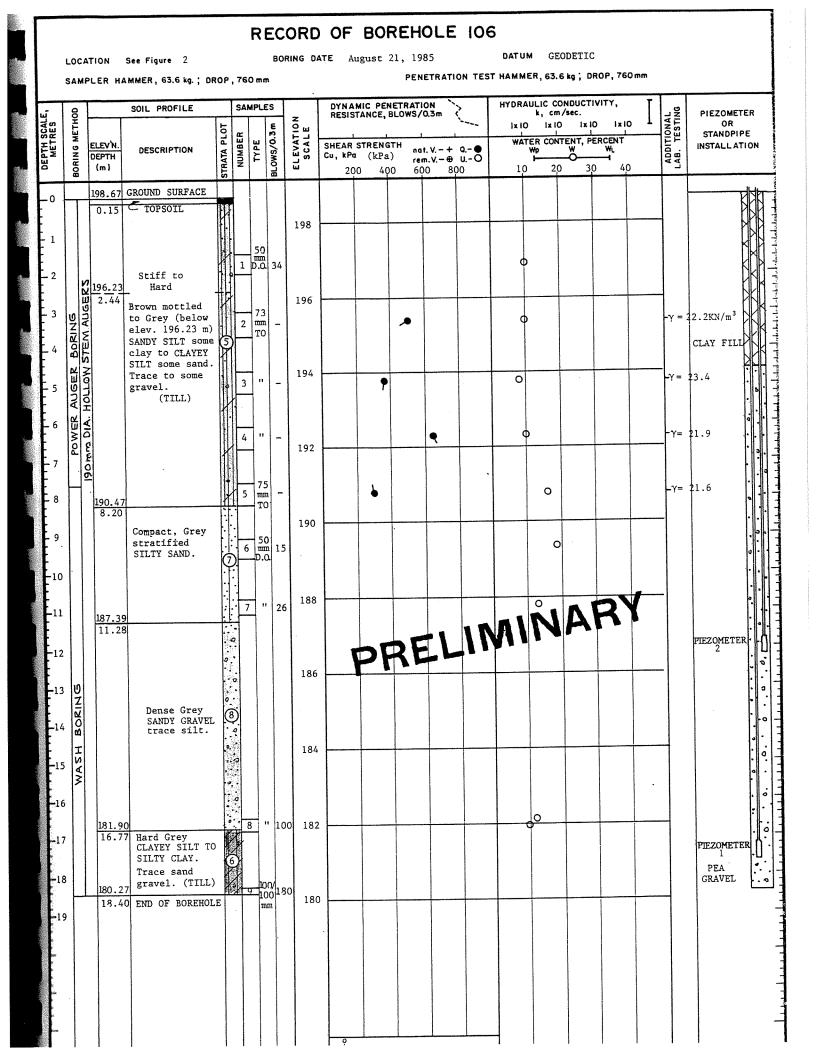

JULY 20, 1981 DATUM GEODETIC


SAMPLER HAMMER WEIGHT 62.5kg DROP 760 mm.


See Figure 2

LOCATION

PENETRATION TEST HAMMER WEIGHT - DROP -


	1	ER HAMMER WEIGHT	62				760 m					ATION TE	ST HA	MMER \	VEIGHT		DROP		
METHOD		SOIL PROFILE	01		MPL		NOL	R	NAMIC	PENET	RATION WS/	2		K.,	TOF PE CM./SE	C.	14 A.	AL	PIEZOME
BORING	ELEV'N DEPTH	DESCRIPTION	STRAT. PLOT	NUMBER	TYPE	BLOWS / 0.3m	ELEVATION SCALE	SHEA Cu.	R STRE	NGTH	NAT. V REM.V	+ 0● ● U,=O			ONTENT	the second s	NT	ADDITIONAL LAB. TESTING	OR STANDPII INSTALLAT
	- uni								1				+	10	20	30	+0		
•.																			
							200												
4	198 55	GROUND SURFACE						. •	-									1	PROTECTIVE AND CAP - GROUND SURFACE
	0.00	SAND AND GRAVEL	8		\hat{D}									. .					CEMENT
	1 147351	LOOSE GREY			0mm D.O.	9 .			· .					- x					
	196.11 2.44	(FILL)	X		P.o.	7		-							0				BACKFILL
2.	en A A		0.0 	2		37	195-							o					BENTONITE -
/ STEM		VERY STIFF TO		3		25						• • •							
OLLOW		VERY STIFF TO HARD, GREY CLAYEY SILT WITH SOME SAND AND GRAVEL	S	-				•		'									2
H N		(TILL)		4		z		S STA						O					BACKFILL
10.40	area a			5															
011	190.02 8,53						190-							Ø :				-мн	
		OMPACT, GREY		6	ě				Ċ.	NARY A				Ò	C.))			PIEZOMETER
	01.254	SUPPACT, GREY SILTY FINE SAND WITH SOME CODDLES ND FREQUENT THIN AYERS OF CLAYEY SULT AND FINE	D-	7 4	· 5			-							Ø				PEA GRAVEL- FILTER
	G	RAVEL			4	6	Ì							۲ ۵	0-1	×.		-MH	FILTER
	185.99 12.56 E		10 =	=	85/	×8m				÷	· · ·		9					· .	
							185-											v F	VATER LEVA
			ŀ											· ·					ON SEPT 1
																		•	· · ·
ŀ												-							
																•			•
							180-												
						ľ													· · ·
				ŀ					-									-	
, l i i			·				15 -	o 5 Per	cent ax	ial strain	at failu	re							•

	LOG	CATION	See Figure 2						ECOF		้วมม	Y 27		28,19	181		ΔΤυΜ					
	SAI		HAMMER WEIGHT	GZ				760 m						TEST			IGHT -			р —		
BORING METHOD	DΕ	<u>е∨'N</u> . РТН п)	SOIL PROFILE	STRAT. PLOT	NUMBER	Түре	BLOWS/0.3 m	ELEVATION Scale		NAMIC SISTAN		NAT.			ixi		:M. / SE	c. x10	IX IO		ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
A POWER AUGER	ITO MM. HOLLOW STEM	0.00 197.92 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22					14 16 13 10 5 4 16 16 16 16 16 16 16 16 16 16 16 16 16	1 7 1 (13m 4 8	85	0						0 0	0				- MH	
	VEP	TICAL	JUNEL TROUGHE		~/					Gol	aer	ASS	SOCIA	1153							U1	IEUNEU - die La

I

метнор		SOIL PROFILE		SAMP	-	-	N III	DYN A RESIS	MIC PE	BLOWS	10N /0.3m	2	HYDR.	k, cn	ONDUCT n/sec. O ixi	IVITY, 0 [1x]0	。 I	STING	PIEZOMET
BORING ME	ELEV'N. DEPTH (m)	DESCRIPTION	STRATA PLOT	NUMBER		LUWS/ U.J	ELEVATION Scale	SHEAR Cu, kP	STREN		1 at. V. – + em. V. – ⊕	a● uO	WA 1(₩p ↓)	ADDITIONAL LAB. TESTING	STANDPIF INSTALLAT
60	199.10	GROUND SURFACE	ŝ																PROTECTION PIPE
	0.15		S II		.0. 10.		198							0					CEMENT SURFACE SEAL CLAY FILL
	2.44 <u>195.14</u> 3.96	SILTY FINE		2		28	196							C				- MH	BENTONITE SEAL
ORING CTEM ALICEPS		Hard Grey SANDY SILT. some clay to CLAYEY SILT. some sand. Trace gravel. (TILL)		3		60 36	194 192												
AUGER BORING	190.5 8.54	Compact Grey		5		44	192							•				- MH	PEA GRAVEL
POWER /	:1	stratified SILTY FINE SAND with some silt zones.	\bigcirc		11	12 8	188			E	F		N		-	٦F	Y	, мн	
	<u>187.5</u> 11.5	8 Very Dense Gre Coarse GRAVEL with some sand occ. boulders.	8) 8	21	108	186		t				0					- MH	PIEZOMETE
WASH BORING	1.2.1	Hard Grey clayey silt to SILTY CLAY Trace sand occasional		9		177	184							<u>о</u> н				- MH	PEA GRAVEL
Š.	181.9	fine gravel. (TILL)	6	10		121								0					
	17.2		E				180											_	

DEPTH SCALE, METRES	BORING METHOD	ELEV'N.	SOIL PROFILE	STRATA PLOT	~	ILY PE	BLOWS/0.3 m	ELEVATION SCALE	RESIS	STANCE,	BLOWS/	0.3m < <u> </u>	a•	HYDRAI Ix IO WAT	k, cm ixiC	/sec.) 1x10 1 TENT, Pf W		, I	ADDITIONAL LAB. TESTING	PIEZOMI OR STANDP
2	BORIN	DEPTH (m)		STRAT	Ń	F	BLOW.	S ELE	Cu, kP	u 	re	m.V.— ⊕	uO	10)	LAE	
-0		199,12 0.15	GROUND SURFACE	X X				198												CLAY FILL
-2	BORING STEM AUGERS		Very stiff mottled Brown to Hard. Grey, SANDY SILT, some					196												PEA GRAVEL
- 5	AUGER BORIN		clay to CLAYEY SILT, some Sand to gravel. (TILL))				194												PIEZOMET
- 7	POWER	190.58		· · · · ·		- 5(- D.C) n 55	192							0				-	2 BENTONI SEAL-
-10		0.34	Compact to Dense. Grey stratific SILT to SILTY FINE SAND becoming		2		4.								0		Ð	X		
-12	WASH BORING	<u>186.0</u> 13.10	coarser with depth.	······································			' 7'		1	P	R	E		M	11	°				PIEZOME
-14 -14 -15		<u>185.0</u> 14.20	SANDY GRAVEL.	11			7	6						0						PEA _ GRAVE
و و المراجع																				
a hara a hara a																		And and a second se		

	BORING METHOD	ELEV'N. DEPTH	SOIL PROFILE	STRATA PLOT	NUMBER	TYPE 3971	BLOWS/0.3 m	ELEVATION Scale	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m SHEAR STRENGTH Cu, kPa nat. V+ Q					HYDRAULIC CONDUCTIVITY, k, cm/sec. ix 10 ix 10 ix 10 ix 10 WATER CONTENT, PERCENT Wp W WL					ADDITIONAL Lab. testing	PIEZOMETER OR STANDPIPE INSTALLATIO	
	BOR	(m) 198.88 0.15	GROUND SURFACE	STRA	ž		BLO				re	m.V ⊕	00	10) 20) 3(0 40		LA		
	SOKING STEM AUGERS		Stiff to Hard mottled Brown to Grey. CLAYEY SILT Trace sand & gravel. (TILL)					198												PEA GRAVEL	
	190 POVER AUGER BORING					50 D.O	52	194			- -)					CLAY FILL AND GRAVEL MIXTURE	
0		<u>191.04</u> 8 . 84	Loose/compact stratified SILTY SAND with numerous silty clay interlayers.		2	1 F	2	190		P	R	EI	_1	M	11	۹ (م	R	Y	, ,	BENTONITE SEAL	
3	H BORING	<u>186.38</u> 12.5	Very Dense Grey, SANDY GRAVEL trace Silt.	()			98	186						0	0				- MH - MH	CAVE-IN MATERIAL	
5	MASH	<u>183.94</u> 14.94 <u>183.18</u> 15.7	Hard Grey SILTY CLAY, (TILL) END OF BOREHOLE	Ê	6		53	184							0			•		PIEZOMETER PEA GRAVEL	
7						·		182													

ſ

RECORD	OF	BOR	EHOLE	108
BORING DATE	Augu	ıst 20,	1985	

DATUM GEODETIC

SAMPLER HAMMER, 63.6 kg.; DROP, 760 mm

LOCATION See Figure 2

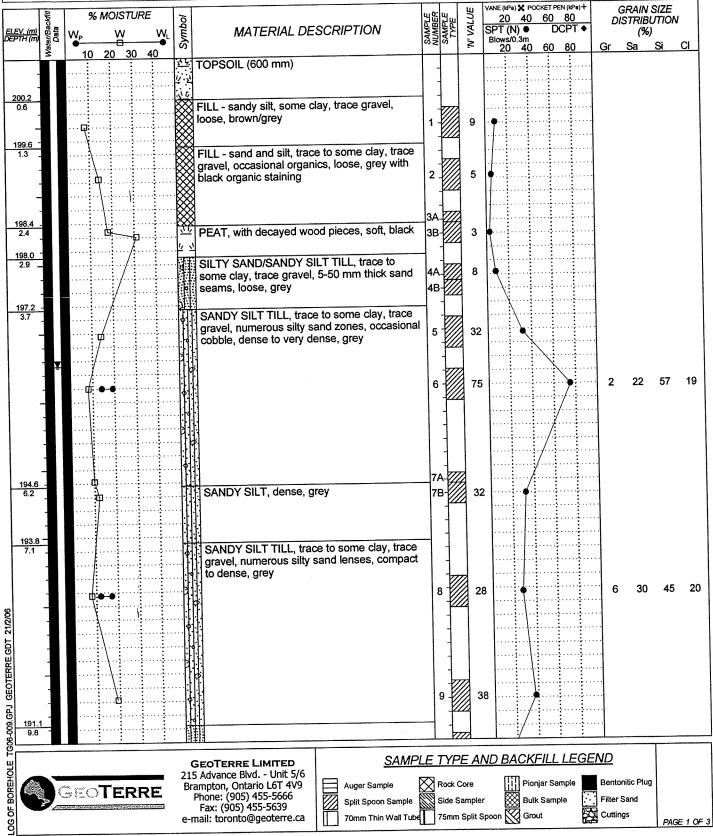
PENETRATION TEST HAMMER, 63.6 kg; DROP, 760mm

Τ	0	Τ		SOIL PROFILE		SAM		s		DYNA	MIC PE	NETRATI BLOWS/	ON Sam	>	HYDR		ONDUCT	ινιτΥ,	Ţ	SC L	PIEZOMETER	
MEINES	BORING METHOD		LEV'N. EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	BLOWS/0.3m	ELEVATION SCALE	SHEAR Cu, kPo	STREN	GTH na	L	• q● UO	lx I W/) Ixi	1	, I	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATIO	
	BOR	_	(m) 99.06	GROUND SURFACE	STR	z		BLO	<u>ت</u>												PROTECTION PIPE CEMENT	<u>+</u> +
1			0.15	Stiff Brown mottled fis- sured		1	50 mm D.O.	16	198								0				CEMENT SURFACE SEAL	
3	ORING	EM AUGERS	9 <u>6.62</u> 2.44	Grey (below elev. 196.62 m) SANDY SILT, some clay to CLAYEY SILT.		2	\$ †	14	196							0					CLAY FILL	$\nabla \nabla \nabla$
5	AUGER B	TLOW ST		Some sand trace gravel (TILL)		3		14	194							0				_	BENTONITE	XX
6 7	POWER P	mm DIA. HO	192.66 6.40		<u> </u>	4		24	192							0				-	SEAL	
8		190 m		Compact to	•••••	· 5 ·		7									0				•	
9 10			189.61 9.45	Dense Grey	····(7)	6	- -	5	190								0	a	X		PEA GRAVEL . 9	
11				with some thin silty clay inter- layers at about elev. 189.61 m.	•••••••••••••••••••••••••••••••••••••••	· 7		15	188		P	R	EI	-1'	M	11	V P			-	PIEZOMETER 2 BENTONITE SEAL	
12	RORING		185.96 13.1	;	· · · ·	. 8	- "	31	186		8						¢ 			_	CAVE-IN	
14	3		184.16	Very Dense Grey SANDY GRAVEL, some boulders.	:		1	' 13							0						PIEZOMETER	~ ~ ~ ~
15			14.9 183.40 15.6	Hard Grev CLAY EY SILT TO SILI CLAY. Trace san & gravel. (TILL END OF BOREHOL	Y id .) .E		0,	' 12 20 m	13									0	~			2
									182													
-																						
-																						
-																						

RECORD OF BOREHOLE 109

LOCATION See Figure 2

BORING DATE August 23 & 26, 1985 PENETRATION TEST HAMMER, 63.6 kg; DROP, 760mm

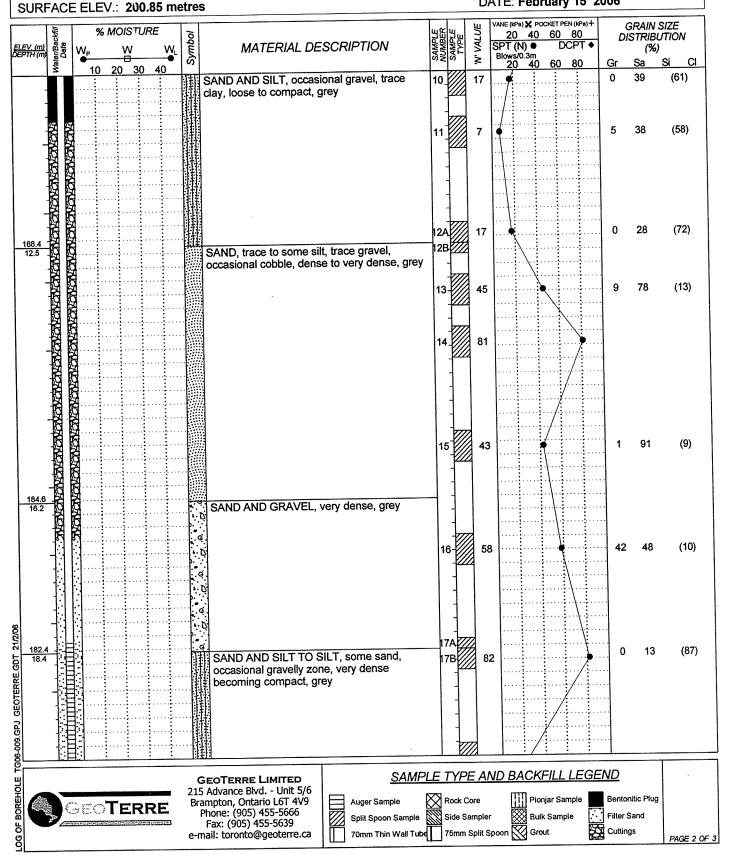

DATUM GEODETIC

SAMPLER HAMMER, 63.6 kg. ; DROP, 760 mm

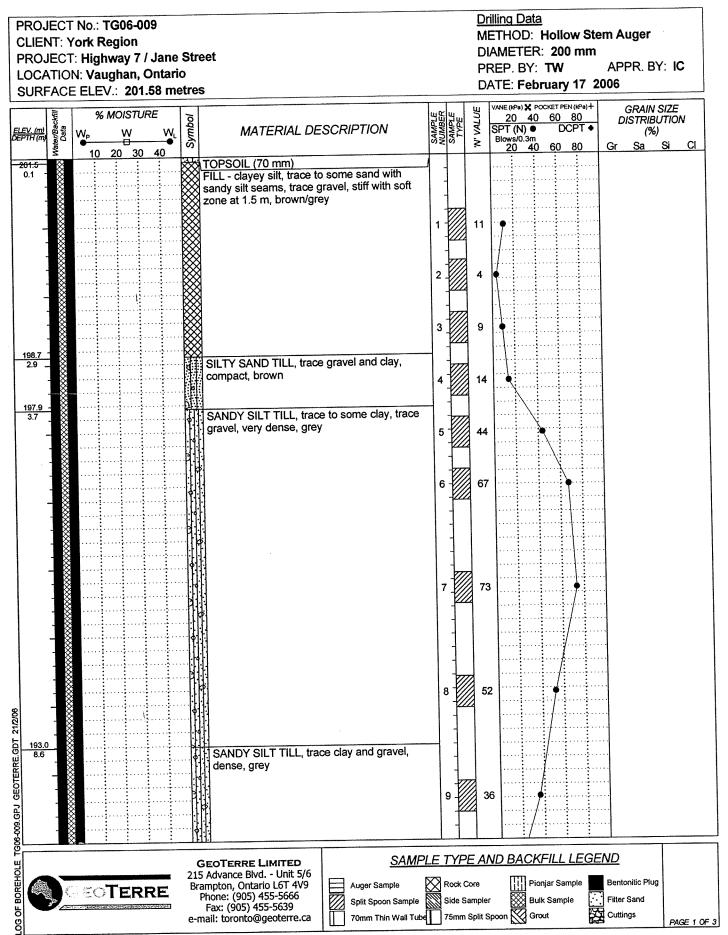
.	۵		SOIL PROFILE		SAN	APLE	s	T	DYNA	MIC PE	NET	RATIO	N	>	HYDR		ONDUCT	ΊνιτΥ,	T	ور	PIEZOMETER
METRES	BORING METHOD	ELEV'N. DEPTH (m)	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	BLOWS/0.3 m	ELEVATION SCALE	SHEAR Cu, kP	STREN		not. '	v. – + v. – ⊕	uO	ix i WA	D IXI TER CON Wp	0 Ix ITENT, F W	ERCENT	1	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALL ATION
	<u>a</u>	199.95	GROUND SURFACE	S I			а —	200	·····	ļ	ļ								ļ		PROTECTION
•0 -	Τ	0.15	CTOPSOIL																		CEMENT SURFACE SEAL
-1			Very stiff mot- tled Brown Fissured.	X · · · · ·	1	50 mm D.Q.	20	198								0					CLAY FILL
. 3		197.51 2.44	To Grey (below Elev. 197.51 m)		2	76 mm TO	-	196								0				-	
- 5	POWER AUGER BORING		SANDY SILT Trace to some clay. Trace gravel			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-				•					рн				- MH	· • • • • • • • • • • • • • • • • • • •
- 6	AUGER BO		and occasional boulders. (TILL)	etter procession Souther	4	-50 -D.C		194							(
- 8	POWER			0	5 6) -) 56	192								ф 					PEA GRAVEL FILL
- 9 -10		189.5	9		7		0 - 0 - 1 - 16	190	`							он 				- MH	· .
-11		10.3	Compact Grey stratified	• • • •	· · ·		' 6	188					×			0		F	N		· .
-12			SILT TO SILTY FINE SAND.	··· · · · · · ·	: 1 - - - - - - - - - - - - - - - - - -	0,	' 13			-		2	E		N			XF		- MH	
-14 -15						1	" 8	186				<u> </u>	-				0				
-16		<u>184.</u> 15.	55	1	0;; 0 ,	.2	" [.] 3	2 184								d					CAVED-IN MATERIAL
-17	BORIN G		Very dense Grey SANDY GRAVEL.		<u>، ا</u> م	13	" 5	7								0				- MH	
	ASH	<u>180.</u> 19.	20 Hard Grev SILT	CY	• · · · · · · · · · · · · · · · · · · ·	14	" 6									0				мн	PIEZOMETER
-20		179. 20.	65 (TILL)		O.	15	" 1	80 180	,								0				
-21																					
F									15	-5 PERCE		UAL STE		FAILURF	\neg						

PROJECT No.: **TG06-009** CLIENT: York Region PROJECT: Highway 7 / Jane Street LOCATION: Vaughan, Ontario SURFACE ELEV.: 200.85 metres

Drilling Data METHOD: Wash Boring DIAMETER: 75 mm PREP. BY: TW APPR. BY: IC DATE: February 15 2006



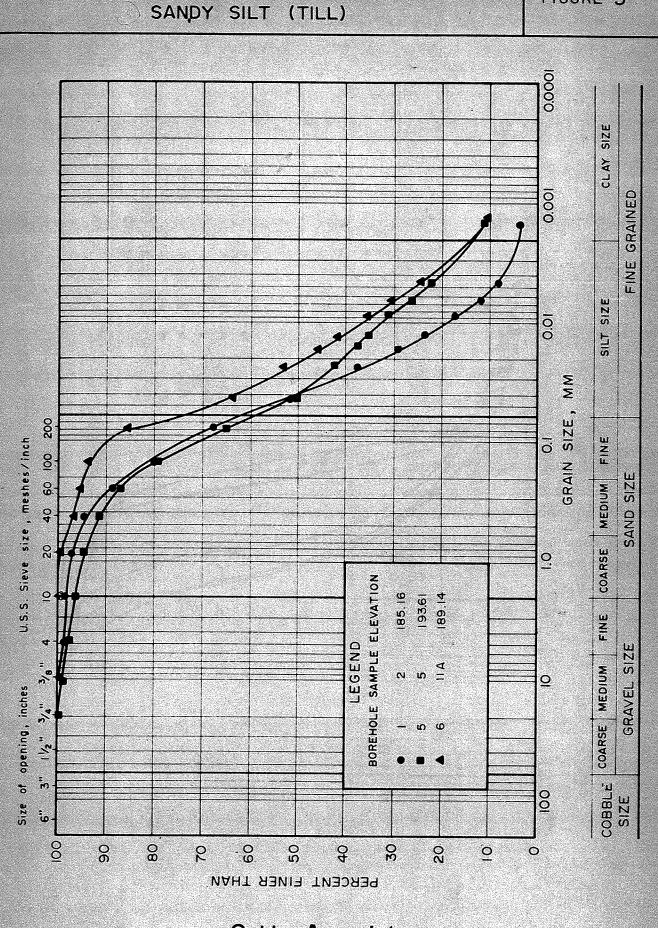
PROJECT No.: TG06-009 CLIENT: York Region


LOCATION: Vaughan, Ontario

PROJECT: Highway 7 / Jane Street

Drilling Data METHOD: Wash Boring DIAMETER: 75 mm PREP. BY: TW APPR. BY: IC DATE: February 15 2006

PROJ	IECT	'No.: 1	G06	-009)							rilling Data
		′ork R ∵ High			lane	Str	eet					IETHOD: Wash Boring IAMETER: 75 mm
LOCA		N: Vau	ghar	n, Ol	ntari	0						REP. BY: TW APPR. BY: IC
L		ELE	/.: 20	00.8	5 me	etre	S			,	D	ATE: February 15 2006
<u>ELEV. (m)</u> DEPTH (m)	er/Backfill Dafa	% W _P	MOIST W	TURE	W _L	Symbol	MATERIAL DES	CRIPTION	SAMPLE	SAMPLE TYPE	N' VALUE	VANE (kPa) ★ POCKET PEN (kPa) + 20 40 60 80 GRAIN SIZE DISTRIBUTION (%) SPT (N) ● DCPT ◆ Blows ⁽⁰⁾ .3m (%)
	Mat 11	10	20	<u>30</u>	40	S	SAND AND SILT TO SILT,	some sand,	18	1	<u>~</u> 24	Blows/0/3m 20 40 60 80 Gr Sa Si Cl
							occasional gravelly zone, v becoming compact, grey	ery dense	-			
180.0 20.8						111	SAND, trace silt, dense, gr	еу				
-	E								19		31	
<u>179.1</u> 21.8 -							END OF BOREHOLE AT					
						,	BOREHOLE WATER LEV		N .	-		·····
-							STANDPIPE PIEZOMETE	0F 21.3 m				
							PIEZOMETER WATER LI	EVEL READINGS		-		·····
-							(m) Feb. 15/06 8.69	(m) 192.09 196.37				
	-						Feb. 16/06 4.48	190.07				
										-		
										-		·····
										-		
Ø												
01 2112/0												
ERRE.GL												
PJ GEOT	-											
TG06-009.GPJ GEOTERRE.GDT 21/2/06	1											
HOLE TG						21	GEOTERRE LIMITED 5 Advance Blvd Unit 5/6					
LOG OF BOREHOLE)eo	ΓEI	RR	E		ampton, Ontario L6T 4V9 Phone: (905) 455-5666 Fax: (905) 455-5639 nail: toronto@geoterre.ca	Auger Sample Split Spoon Sample Tomm Thin Wall Tube		Side S	ample	Spoon Grout Grout
ö						1			L			PAGE 3 OF


Drilling Data PROJECT No.: TG06-009 METHOD: Hollow Stem Auger CLIENT: York Region DIAMETER: 200 mm PROJECT: Highway 7 / Jane Street APPR. BY: IC PREP. BY: TW LOCATION: Vaughan, Ontario DATE: February 17 2006 SURFACE ELEV .: 201.58 metres /ANE (kPa) 🗶 POCKET PEN (kPa)+ 20 40 60 80 SPT (N) • DCPT GRAIN SIZE DISTRIBUTION W' VALUE % MOISTURE SAMPLE NUMBER SAMPLE TYPE Symbol DCPT + Vater/Bac Data MATERIAL DESCRIPTION (%) ELEV. (m) DEPTH (m) w W, Wp Blows/0.3m 20 40 CI Ð Sa Si 60 80 Gr 40 20 30 40 10 SANDY SILT TILL, trace clay and gravel, dense, grey 0A 190.8 SILTY SAND, loose becoming dense, grey 10B 6 10.8 END OF SAMPLING 190.5 Dynamic Cone Penetration Test (DCPT) completed from 11.28 m to 13.11 m PRESUMED SILTY SAND, loose to compact 189.7 PRESUMED SAND, dense to very dense 188.8 NOT SAMPLED, presumed sand based on 128 drilling observations 187.9 13.7 NOT SAMPLED, presumed sand and gravel based on drilling observations TG06-009.GPJ GEOTERRE.GDT 21/2/06 183.0 18.6 NOT SAMPLED, presumed sand based on drilling observations SAMPLE TYPE AND BACKFILL LEGEND GEOTERRE LIMITED BOREHOLE 215 Advance Blvd. - Unit 5/6 Brampton, Ontario LGT 4V9 Phone: (905) 455-5666 Fax: (905) 455-5639 **Bentonitic Plug** Pionjar Sample Rock Core Auger Sample **E**TERRE Filter Sand Bulk Sample Side Sampler Split Spoon Sample Cuttings LOGOF Grout 70mm Thin Wall Tube 75mm Split Spoor e-mail: toronto@geoterre.ca PAGE 2 OF 3

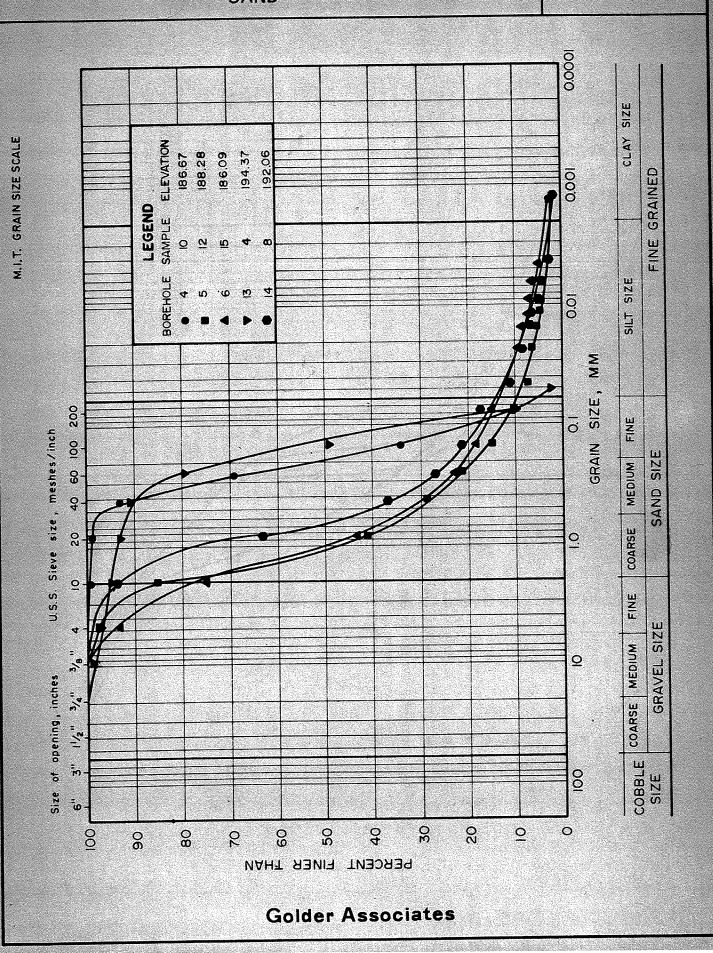
PROJECT No.: TG06-009

CLIENT: York Region PROJECT: Highway 7 / Jane Street LOCATION: Vaughan, Ontario SURFACE FLEV.: 201.58 metres

Drilling Data METHOD: Hollow Stem Auger DIAMETER: 200 mm PREP. BY: TW APPR. BY: IC DATE: February 17 2006

	GRAIN SIZE																		
ELE	UEV (m) EPTH (m) EPTH (m) B B B B B B B B B B B B B		Symbol	MATERIAL DES	SCRIPTION	AMPLE	SAMPLE	WE VALUE	2	vane (kPa) X F <u>20</u> 40 SPT (N) ● Blows/0.3m <u>20</u> 40	60 80		GRAIN SIZ DISTRIBUTI (%)	ON					
~ ~		ate		-	3		•	5			0.4		5	2	20 40) 60 80	Gr	<u>Sa</u> Si	
		M	10	20	30) 4() 		NOT SAMPLED, presume drilling observations	ed sand based on									
																· · · · · · · · · · · · · · · · · · ·			
17	9.6 1.9 -							J.	CLAYEY SILT TILL, trace hard, grey	e sand and gravel,					· · · · · · · · · · · · · · · · · · ·		· · · ·		
	-										1.	- - - 1-		>99	· · · · · · · · · · · · · · · · · · ·		 50•		
	7 <u>8.5</u> 3.1		8						END OF BOREHOLE A										
					 		· · · ·		SLOPE INDICATOR INS OF 22.86 m	STALLED TO DEPTH							· · · · ·		
					• • • • •														
								· · · ·											
		- -		 				· · · ·											
12/06																			
RE.GDT 21												-							
J GEOTER		1				· · · · · · · · · · · · · · · · · · ·		· · · · ·											
06-009.GF																			
OG OF BOREHOLE TG00-009.GPJ GEOTERRE.GDT 21/2/08			G MC	> T 1	EF	R	E	21 B	GEOTERRE LIMITED 15 Advance Blvd Unit 5/6 rampton, Ontario L6T 4V9 Phone: (905) 455-5666 Fax: (905) 455-5639 mail: toronto@geoterre.ca		\boxtimes	Rock Side	Co Sar	re mple	F	KFILL LE(vionjar Sample sulk Sample Grout	Be	ntonitic Plug ter Sand	PAGE 3 OF

Golder Associates


M.I.T. GRAIN SIZE SCALE

GRAIN

SIZE

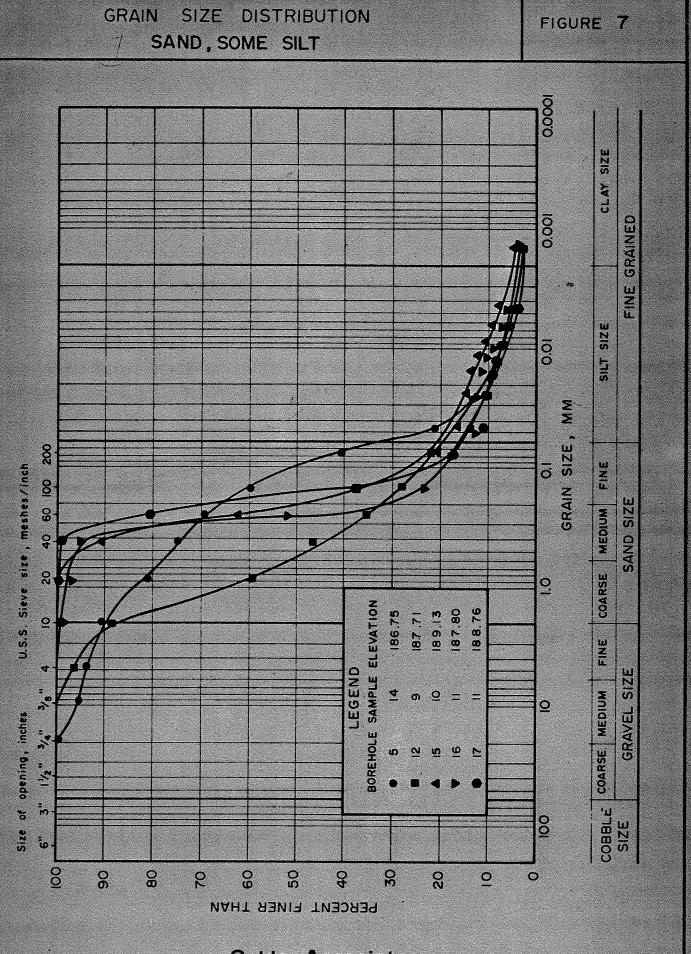
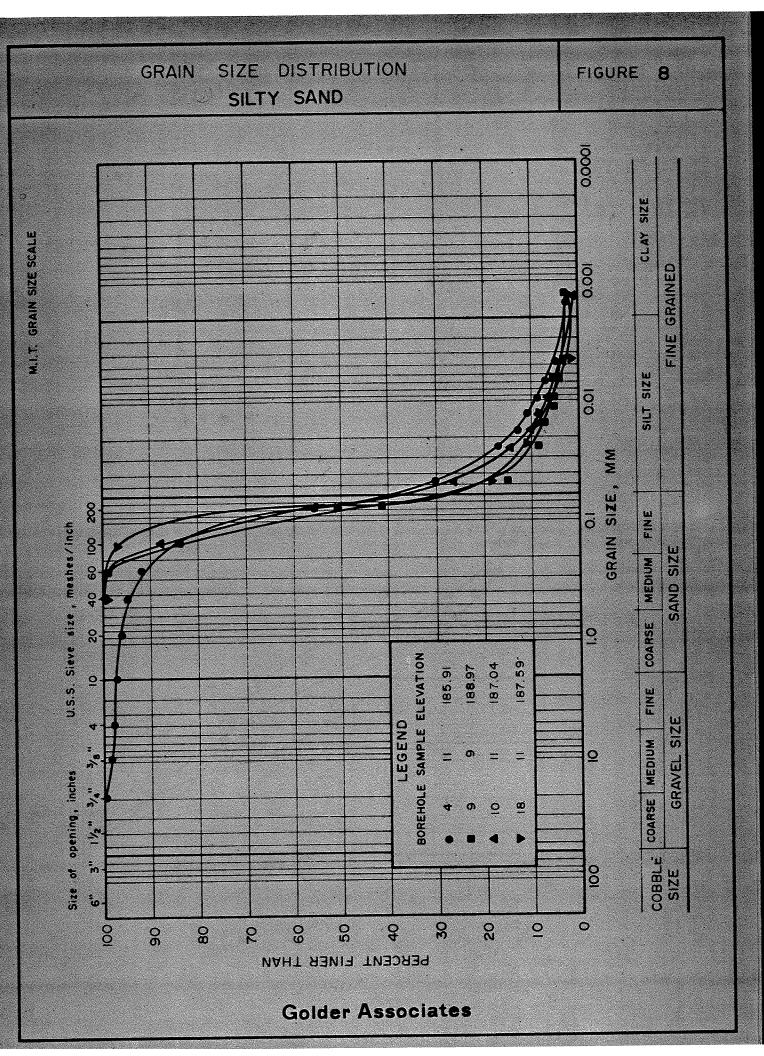
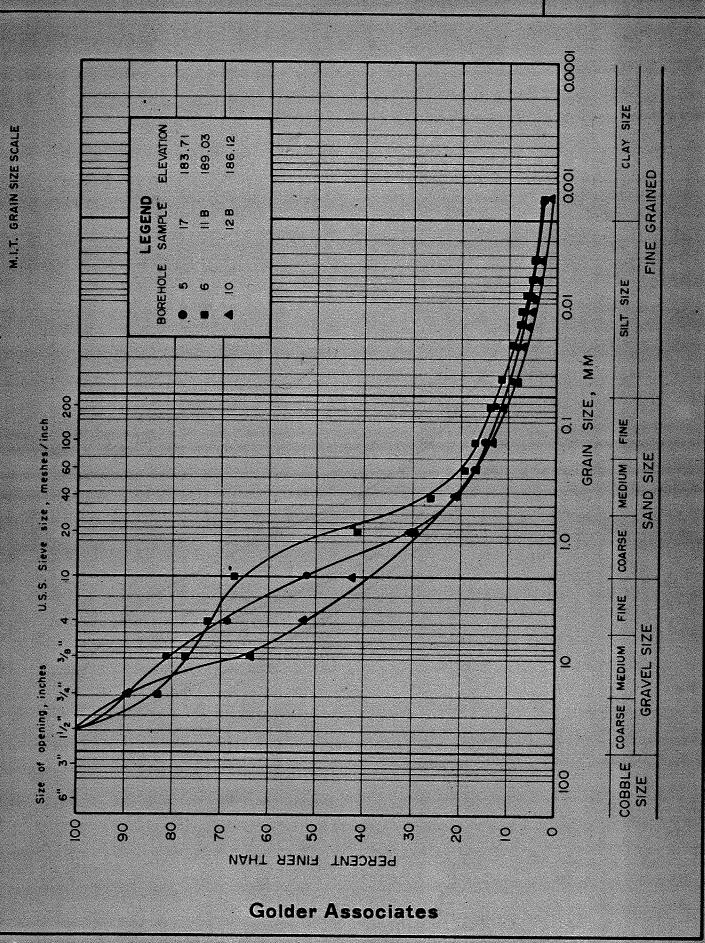
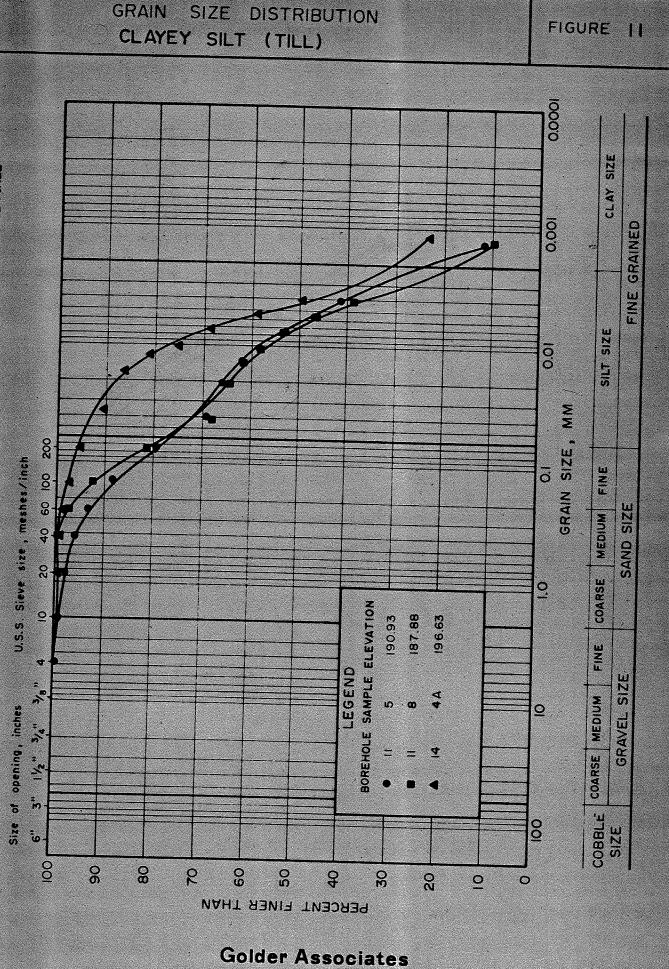

DISTRIBUTION

FIGURE 5

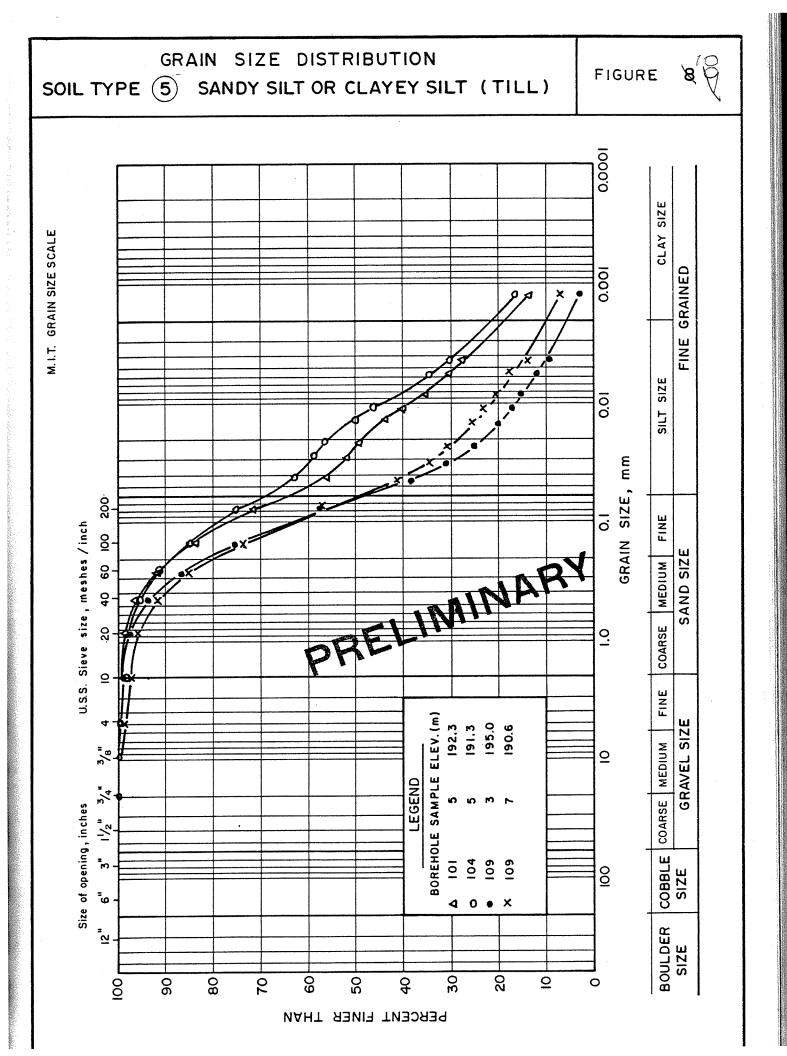

GRAIN SIZE DISTRIBUTION SAND

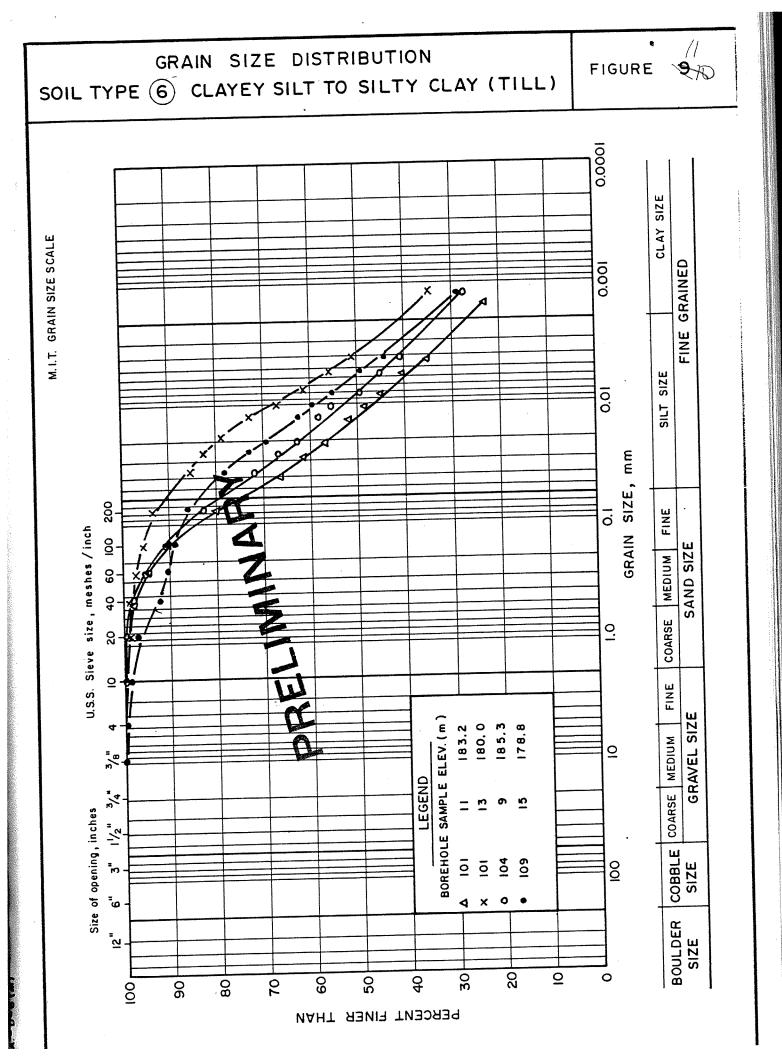

FIGURE 6

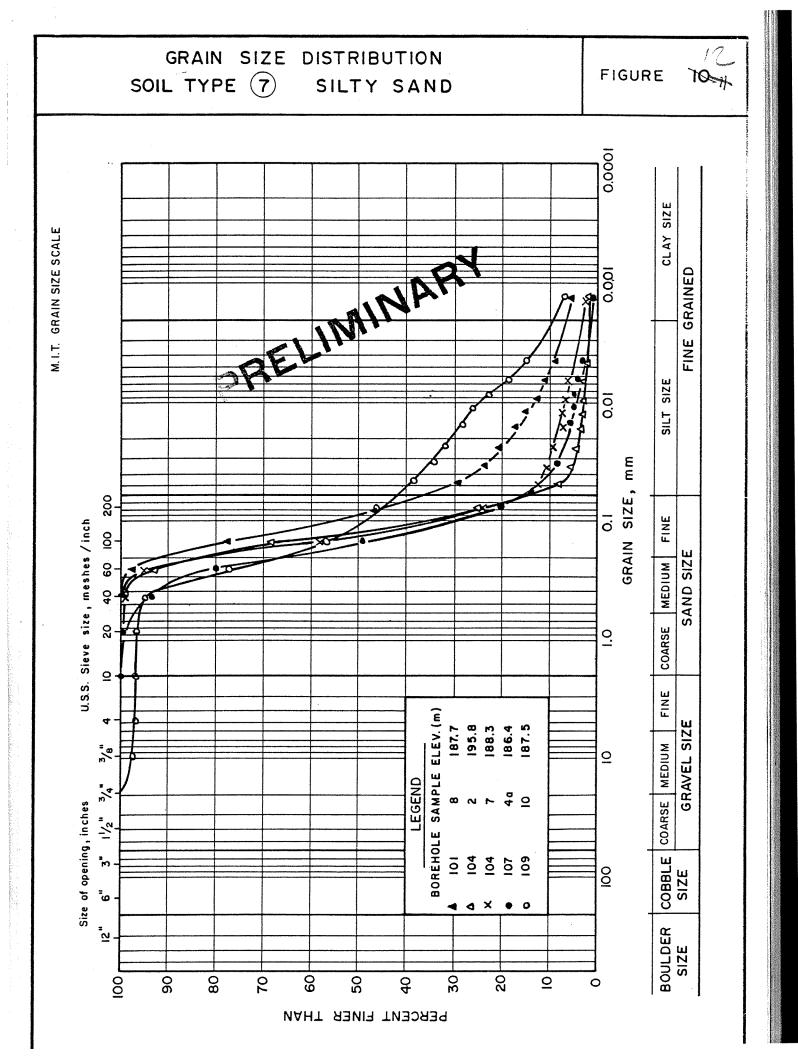
M.I.T. GRAIN SIZE SCALE

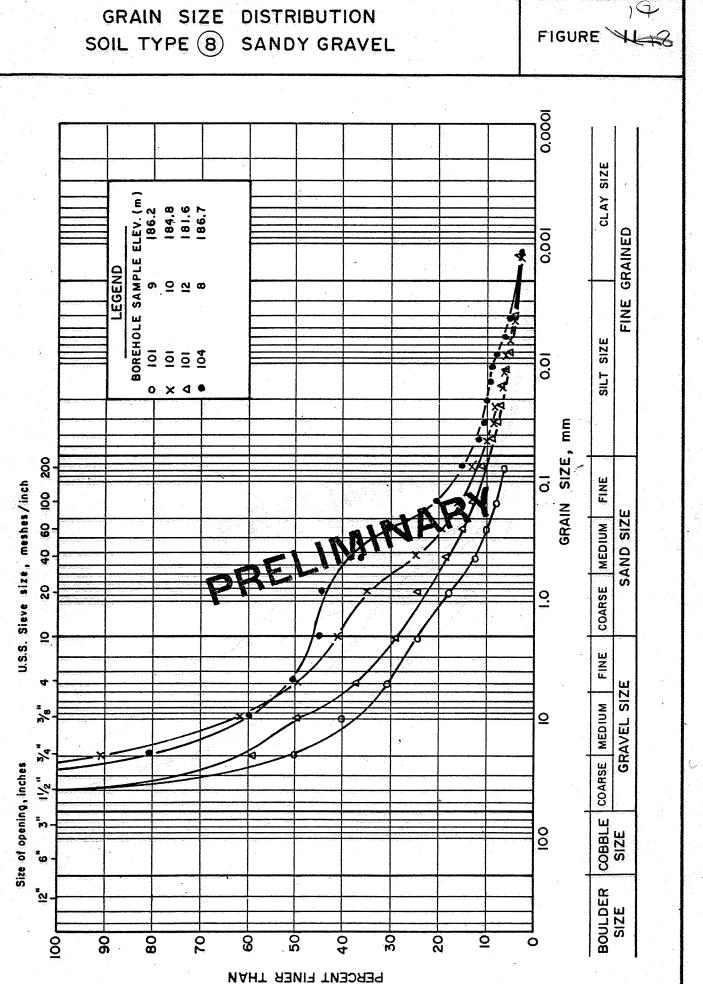

Golder Associates

GRAIN SIZE DISTRIBUTION SANDY GRAVEL

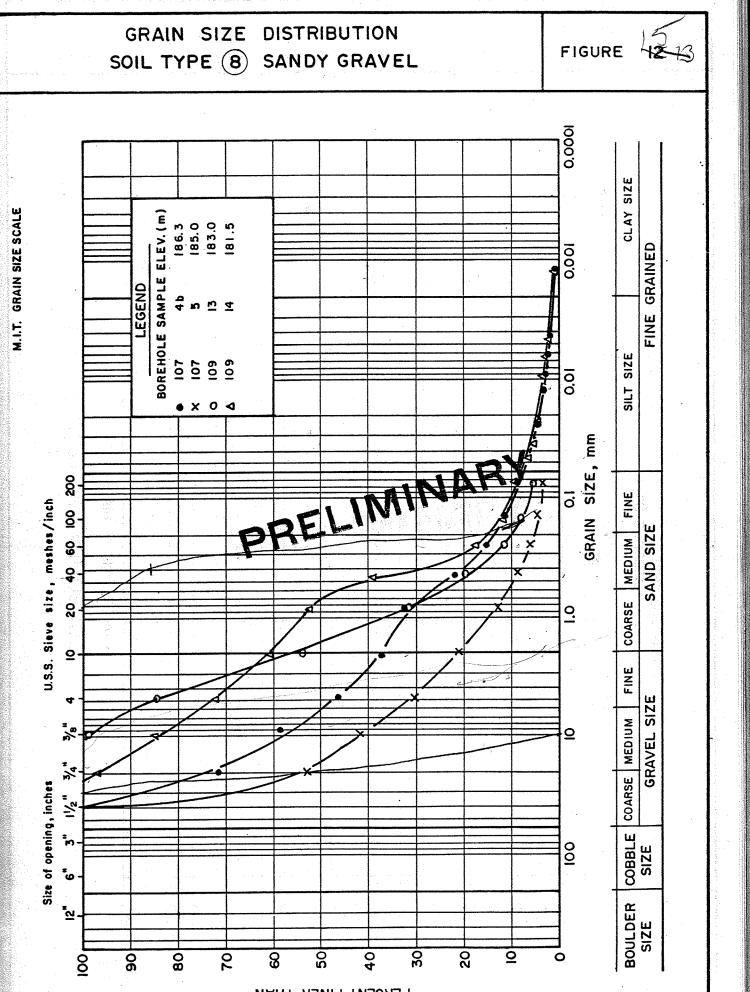

FIGURE 9

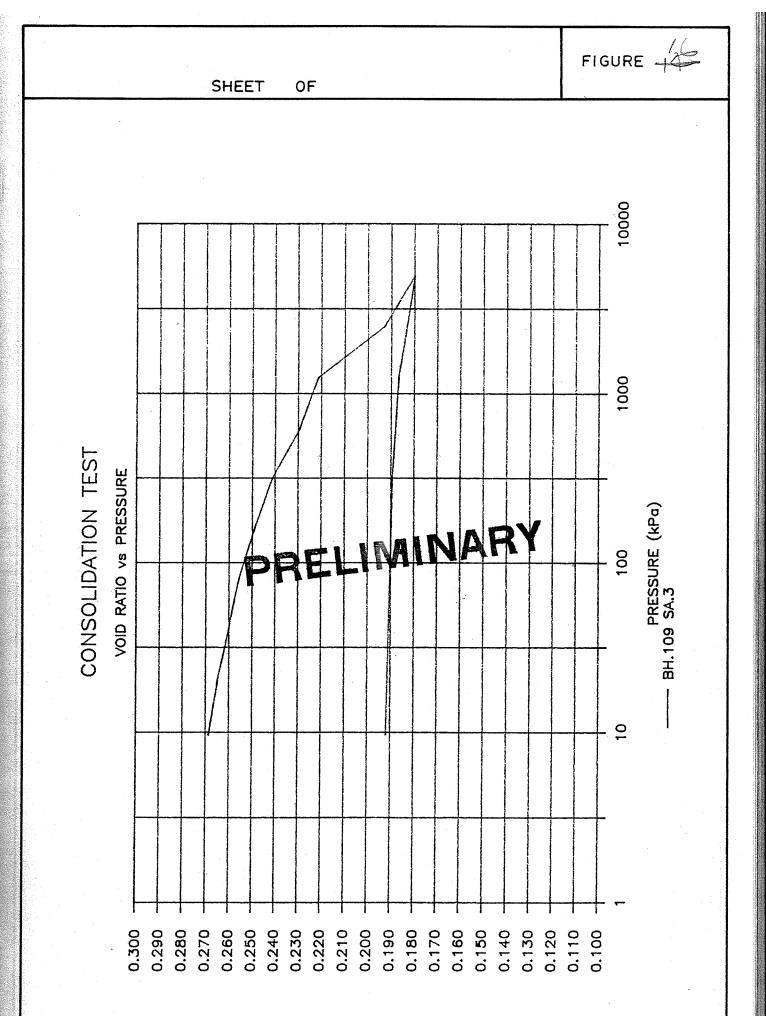


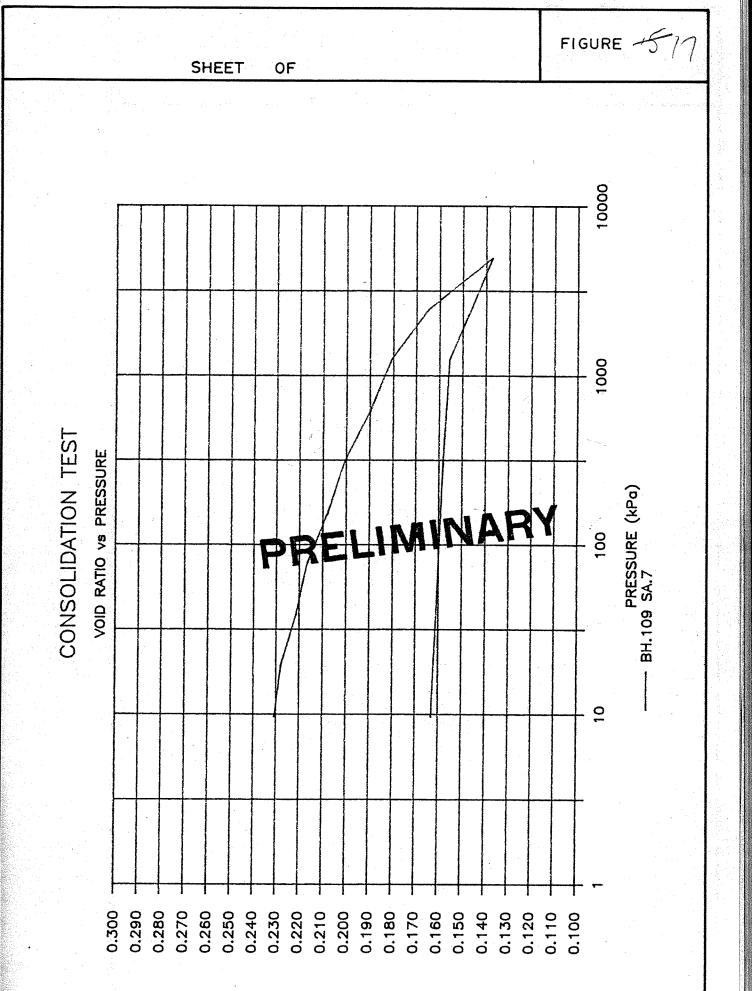

M.I.T. GRAIN SIZE SCALE


SIZE DISTRIBUTION GRAIN FIGURE 12 (TILL) CLAYEY SILT 00000 CLAY SIZE . M.I.T. GRAIN SIZE SCALE 0.001 FINE GRAINED SILT SIZE . 0.0 MW GRAIN SIZE, 40 60 100 200 FINE 6 U.S.S. Sieve size, meshes/inch SAND SIZE COARSE MEDIUM 8 0.1 BOREHOLE SAMPLE ELEVATION 187.65 187.45 88.48 182.19 ₫. FINE 4 LEGEND GRAVEL SIZE COARSE MEDIUM Ø ŝ 0 Ξ Size of opening, inches 3" 1/2" 3/4" N σ œ COBBLE 00 SIZE :9 00 30 20 60 50 \$ 0 0 80 80 2 PERCENT FINER THAN

Golder Associates






M.I.T. GRAIN SIZE SCALE

PERCENT FINER THAN

OITAR GIOV

OITAA GIOV