APPENDIX O

STORM WATER MANAGEMENT REPORT

Spadina Subway Extension – Downsview Station to Steeles Avenue Environmental Assessment

TORONTO TRANSIT COMMISSION

	Environmental Assessment Stormwater Managem
	TABLE OF CONTENTS
	CHAPTER 1.0 INTRODUCTION AND DESIGN STANDARDS
	1.1 STUDY PURPOSE
SPADINA SUBWAY EXTENSION ENVIRONMENTAL	1.2 STUDY SCOPE
ASSESSMENT	1.3 STORMWATER MANAGEMENT DESIGN CRITERIA – CITY OF TORONTO
	1.3.1 Water Quality - Total Suspended Solids (TSS) 1.3.2 Water Ouantity
	1.3.3 Water Balance
	1.4 PERFORMANCE STANDARDS – CITY OF VAUGHAN
	1.5 PERFORMANCE STANDARDS – TORONTO TRANSIT COMMISSION (TTC)
STORMWATER MANAGEMENT KEPORT	1.6 PERFORMANCE STANDARDS – TORONTO AND REGION CONSERVATION AUTHORITY
	1.7 ANALYSIS METHODOLOGY
	CHAPTER 2.0 SHEPPARD AVENUE WEST STATION SWM PLAN
	2.1 DESIGN REQUIREMENTS
	2.2 QUALITY CONTROL
	2.3 QUANTITY CONTROL
	2.4 WATER BALANCE
	2.5 EROSION AND SEDIMENT CONTROL
	CHAPTER 3.0 FINCH WEST STATION SWM PLAN
	3.1 DESIGN REQUIREMENTS
	3.2 QUALITY CONTROL
	3.3 QUANTITY CONTROL
	3.4 WATER BALANCE
	3.5 EROSION AND SEDIMENT CONTROL
	CHAPTER 4.0 YORK UNIVERSITY STATION SWM PLAN
Prepared By:	4.1 DESIGN REQUIREMENTS
URS CANADA INC.	4.2 QUALITY CONTROL
Consulting Engineers	4.3 QUANTITY CONTROL
75 Commerce Valley Drive East	4.4 WATER BALANCE
Markham, Ontario	4.5 EROSION AND SEDIMENT CONTROL
L3T 7N9	CHAPTER 5.0 STEELES WEST STATION SWM PLAN
	5.1 DESIGN REQUIREMENTS
	5.2 QUALITY CONTROL
Revised February 2006	5.3 QUANTITY CONTROL
•	5.4 WATER BALANCE
O:\1-33015347 Spadina Subway EA\Documents\03 Reports\99 Draft Versions\EA\Appendix\Appendix Y	5.5 EROSION AND SEDIMENT CONTROL
Stormwater Management\013006 TTC Spadina Subway EA SWM Rpt.doc	CHAPTER 6.0 CONSTRUCTION IMPACTS AND MITIGATION AND MONITORING
	CHAPTER 7.0 CONCLUSIONS
	O:\1-33015347 Spadina Subway EA\Documents\03 Reports\99 Draft Versions\EA\Appendix\Appendix Y Stormwater Management\SWM Final Report Feb 7 06\013006 TT

2/7/2006 Stormwater Management Report

Раде

Page

APPENDICES

- TRCA's Flood Flow Criteria Map A
- в Rational Method Calculations
- Modified Rational Method Storage Calculations С

LIST OF EXHIBITS

Exhibit 1.1 - Proposed Subway Station Locations	2
Exhibit 2.1 - Existing Drainage Conditions at the Proposed Sheppard West Station	
Exhibit 3.1 - Existing Drainage Conditions at the Proposed Finch West Station	13
Exhibit 3.2 - Proposed Drainage Conditions at the Proposed Finch West Station	14
Exhibit 4.1 - Existing Drainage Conditions at the Proposed York University Station	18
Exhibit 5.1 - Existing Drainage Conditions at the Proposed Steeles West Station	21
Exhibit 5.2 - Proposed Drainage Conditions at the Proposed Steeles West Station	24

LIST OF TABLES

Table 1.1 - Proposed Subway Station Descriptions	1
Table 2.0 - Above Ground Facilities at the Sheppard Avenue West Station	
Table 2.1 - Storage Requirements at the Sheppard Avenue West Station	11
Table 3.0 – Above ground Facilities at the Finch West Station	12
Table 3.1 – Parking Lot Storage Requirements at the Finch West Station	15
Table 3.2 - Passenger Pick-up/Drop-off Storage Requirements at the Finch West Station	15
Table 3.3 - Bus Terminal Storage Requirements at the Finch West Station	16
Table 4.0 – Above ground Facilities at the York University Station	
Table 4.1 -Storage Requirements at the York University Station	19
Table 5.0 – Above ground Facilities at the Steeles West Station	
Table 5.1 - East Commuter Parking Lot Storage Requirements at the Steeles West Station	
Table 5.2 - West Commuter Parking Lot Storage Requirements at the Steeles West Station	
Table 5.3 – Bus Terminal Storage Requirements at the Steeles West Station	

Spadina Subway Extension Environmental Assessment

2/7/2006 Stormwater Management Report

CHAPTER 1.0 INTRODUCTION AND DESIGN STANDARDS

1.1 STUDY PURPOSE

As part of the Spadina Subway Extension Environmental Assessment, the construction of four (4) subway stations and affiliated parking is proposed. Table 1.1 identifies new impervious areas associated with these facilities. A plan showing the locations of these proposed subway stations is provided in Exhibit 1.1.

Table 1.1 - Proposed Subway Station Descriptions

Location	Proposed Facility	New Impervious Area (ha)
Sheppard Avenue West	Station Building	0.2
Finch West	Commuter Parking Lot	2.3
	Passenger Pick-Up/Drop-Off	0.3
	Bus Terminal / Roads / Station Building	1.2
York University Station	Station Building	0.1
Steeles West Station	East Commuter Parking Lot	5.2
	West Commuter Parking Lot	4.9
	Inter-Regional Bus Terminal (north of Steeles) / Station Building	2.1

The proposed subway extension alignment generally follows the divide between the Black Creek subwatershed and the Lower West Don River subwatershed within the Humber Watershed. As a result, surface water is generally conveyed away from each of the proposed station locations to an outlet to one of the two aforementioned watercourses via the existing sewer networks.

With the exception of the Finch West and Steeles West stations where commuter parking lots and bus terminals are proposed, increases in impervious areas resulting from the undertaking consist mainly of small entrance / exit buildings. New roads are proposed at the Steeles West Station but are addressed as part of York Region's Highway 7 Transitway Environmental Assessment. The proposed GO Transit platform at the Sheppard West Station will be addressed under a separate GO Transit Environmental Assessment.

The placement of these permanent facilities with impervious areas may affect the drainage characteristics and quality of runoff from the affected subwatersheds. To offset these potential impacts, lot level conveyance and quality controls will be implemented. To address these potential changes in hydraulic performance, a stormwater management plan for each proposed site has been prepared and is discussed below.

O:\l-33015347 Spadina Subway EA\Documents\03 Reports\99 Draft Versions\EA\Appendix\Appendix Y Stormwater Management\SWM Final Report Feb 7 06\013006 TTC Spadina Subway EA\SWM Rot.doc URS Canada Inc. 1

URS Canada Inc.

ii

O:\1-33015347 Spadina Subway EA\Documents\03 Reports\99 Draft Versions\EA\Appendix\Appendix Y Stormwater Management\SWM Final Report Feb 7 06\013006 TTC Spadina Subway EA SWM Rnt.doc

Toronto Transit Commission

Toronto Transit Commission

2/7/2006 Stormwater Management Report

Exhibit 1.1 - Proposed Subway Station Locations

O:[1-33015347 Spadina Subway EA]Documents/03 Reports/99 Draft Versions/EA\Appendix\Appendix Y Stormwater Management/SWM Final Report Feb 7 06/013006 TTC Spadina Subway EA SWM Ret.doc URS Canada Inc. 2 Toronto Transit Commission Spadina Subway Extension Environmental Assessment

2/7/2006 Stormwater Management Report

1.2 STUDY SCOPE

This stormwater management (SWM) report includes the following for each proposed station location:

- Identification of the existing drainage condition;
- Proposed Drainage Condition; and
- Stormwater Management Plan (Water Quality and Quantity Control, Water Balance, and Erosion and Sediment Control requirements).

In addition, it is assumed that stormwater management of all underground facilities will be conducted in accordance with standard building code practice with connections to sanitary sewers. For above ground facilities, (stations and transit facilities including bus terminals, commuter parking lots and passenger drop-off / pick-up facilities), downspouts will outlet at ground level. In the case of substations without roofs, it is assumed that their floor drains will also outlet at ground level.

1.3 STORMWATER MANAGEMENT DESIGN CRITERIA - CITY OF TORONTO

In accordance with the City of Toronto's Wet Weather Flow Management Policy (August 2003), the following (interim) must be addressed during design for all proposed subway stations:

- Water Quality; •
- Water Quantity including erosion control and; and
- Water Balance.

1.3.1 Water Quality - Total Suspended Solids (TSS)

The wet weather flow (WWF) water quality target is the long-term average removal of 80% of the Total Suspended Solids (TSS) on annual loading basis from all runoff leaving the development site based on the post-development level of imperviousness.

1.3.2 Water Quantity

a) Flood Flow Management Criteria

The required level of peak flow control from the development site shall follow Toronto and Region Conservation Authority (TRCA) Flood Flow Criteria Map, which indicates that quantity control should ensure post to pre-development peak flows for 2 to 100-year return period events. For redevelopment sites < 5 ha, peak flows can be computed using simplified approach such as the Rational Method and IDF curves. Refer to Appendix A for a copy of TRCA's Flood Flow Criteria Map.

O:/1-33015347 Spadina Subway EA/Documents/03 Reports/99 Draft Versions/EA/Appendix/Appendix Y Stormwater Management/SWM Final Report Feb 7 06/013006 TTC Spadina Subway EA/SWM Rit.doc URS Canada Inc. 3

Toronto Transit Commission

2/7/2006 Stormwater Management Report

b) Erosion Control

The TTC must contact TRCA staff to determine erosion control/geomorphology requirements for individual development sites in the planning stage (TRCA's response has been noted in each section addressing erosion and sediment control).

- 1. For Rouge River watershed, follow TRCA (Toronto Region Conservation Authority) erosion control criteria for individual sites, which discharge directly to and/or are in proximity of natural watercourses;
- 2. For all new large development blocks, which discharge directly to and/or in proximity of natural watercourses within other watersheds, the proponents are required to complete an Erosion Analysis Report to determine the erosion control criteria for the sites. Please consult TRCA for further details.
- 3. For new development blocks where it is not feasible (i.e. proposed development is negligible with respect to the total drainage area of the receiving watercourse) to complete an Erosion Analysis Report, TRCA typically requires that runoff from a 25 mm storm shall be detained on-site and released over a minimum of 24 hours.
- 4. For small infill/redevelopment sites < 2 ha, erosion control in the form of stormwater detention is normally not required, provided the on-site minimum runoff retention from a 5 mm daily rainfall event is achieved under the Water Balance Criteria.

c) Erosion and Sediment Control During Construction

The City of Toronto Erosion Control Criteria during construction are as follows:

- · Regardless of size for all development sites, temporary erosion and sediment control for construction must be provided on-site.
- · All erosion and sediment control BMPs shall be designed, constructed and maintained in all development sites in accordance with the "GTA CA's Erosion & Sediment Control Guidelines For Urban Construction" as well as City of Toronto Sewer Use By-Law and/or other City of Toronto requirements on a site by site basis, where applicable.

1.3.3 Water Balance

- a) Retained on-site, to the maximum extent practicable to achieve the same level of annual volume of overland runoff allowable from the development site under predevelopment (i.e. presently existing site conditions before the new proposed development) conditions.
- b) If the allowable annual runoff volume from the development site under postdevelopment conditions is less than the pre-development conditions, then the more

O:/1-33015347 Spadina Subway EA;Documents/03 Reports/99 Draft Versions/EA;Appendix / Appendix Y Stormwater Management/SWM Final Report Feb 7 06/013006 TTC Spadina Subway EA;SWA Ret.doc URS Canada Inc. 4

Toronto Transit Commission

Spadina Subway Extension Environmental Assessment

2/7/2006 Stormwater Management Report

stringent runoff volume requirement becomes the governing target for the development site.

c) Regardless of the off-site compensatory/cash-in-lieu option, the minimum on-site runoff retention requires the proponent to capture all runoff from a small design rainfall event (typically 5 mm) and restore it on-site through infiltration, evapotranspiration and rainwater reuse.

1.4 PERFORMANCE STANDARDS – CITY OF VAUGHAN

The proposed Steeles West station is located on the boundary between the City of Toronto and the Region of York, within the City of Vaughan. City staff has indicated that quality control should be in accordance with TRCA requirements, and that quantity control should ensure post to pre-development peak flows for 2 to 100-year return period events.

Furthermore, any proposed SWM works north of Steeles Avenue between Jane and Keele Streets must proceed in accordance with the stormwater management initiative that will be developed as part of the City of Vaughan's planned development in this area (OPA 620).

1.5 PERFORMANCE STANDARDS - TORONTO TRANSIT COMMISSION (TTC)

This report also considered design criteria recommendations contained in TTC's "Design Standards, Volume 1." Section 2 provides storm drainage design recommendations. The following is a summary:

- The Modified Rational Method may be used to develop hydrographs for the design of detention storage systems (Section 2.2):
- For design purposes the storm frequency shall meet the requirements of the approval authorities (Section 2.4.2.1);
- Roof storage maximum controlled run-off 42 1/s per hectare of roof area, maximum ponding depth 150 mm; surface storage maximum ponding depth of 0mm for 1:2 year storm and 250 mm for 1: 100-Year storm (Section 3.2);
- Overland flow gradients for parking lots shall be a minimum of 2% and a maximum of 4% (Section 5.2.1).

1.6 PERFORMANCE STANDARDS – TORONTO AND REGION CONSERVATION AUTHORITY (TRCA)

In accordance with TRCA's requirements, lot level conveyance controls (parking and roof-top storage) are to be designed to reduce post development peak flows for 2:100 year return periods

O:\1-33015347 Spadina Subway EA\Documents/03 Reports/99 Draft Versions/EA\Appendix\Appendix Y Stormwater Management/SWM Final Report Feb 7 06/013006 TTC Spadina Subway EA\Documents/03 Reports/99 Draft Versions/EA\Appendix\Appendix Y Stormwater Management/SWM Final Report Feb 7 06/013006 TTC Spadina Subway EA\Documents/03 Reports/99 Draft Versions/EA\Appendix\Appendix Y Stormwater Management/SWM Final Report Feb 7 06/013006 TTC Spadina Subway EA\Documents/03 Reports/99 Draft Versions/EA\Appendix\Appendix Y Stormwater Management/SWM Final Report Feb 7 06/013006 TTC Spadina Subway EA\Documents/03 Reports/99 Draft Versions/EA\Appendix\Appendix Y Stormwater Management/SWM Final Report Feb 7 06/013006 TTC Spadina Subway EA\Documents/03 Reports/99 Draft Versions/EA\Appendix\Appendix Y Stormwater Management/SWM Final Report Feb 7 06/013006 TTC Spadina Subway EA\Documents/03 Reports/99 Draft Versions/EA\Appendix\Appendix Y Stormwater Management/SWM Final Report Feb 7 06/013006 TTC Spadina Subway EA\Documents/03 Reports/99 Draft Versions/EA\Appendix\Appendix Y Stormwater Management/SWM Final Report Feb 7 06/013006 TTC Spadina Subway EA\Documents/03 Reports/99 Draft Versions/EA\Appendix\Appendix Y Stormwater Management/SWM Final Report Feb 7 06/013006 TTC Spadina Subway EA\Documents/03 Reports/99 Draft Versions/20 Reports/99 Draft Versions URS Canada Inc. 5 Toronto Transit Commission

Spadina Subway Extension	2/7/2006
Environmental Assessment	Stormwater Management Report

to pre-development flows. Furthermore, the Toronto and Region Conservation Authority (TRCA) encourages the use of innovative lot level stormwater management controls. These practices include maximizing on-site stormwater infiltration, the retention and enhancement of pervious and vegetative area (tree and shrub plantings, infiltration trenches, grassed swales), the use of biologically-based pollutant load reduction features (bio-swales, vegetated filter strips) and the reduction of sediment and nutrient loadings through the development of, for instance, pollution prevention plans, sediment control during construction, oil-grit separators etc.

Examples of innovative of level controls may be viewed on TRCA's website (http://www.trca.on.ca); refer to the Etobicoke / Mimico Creek Strategy document, Chapter 7, page 184. These measures should be considered and incorporated where possible during detailed design. TRCA's Erosion and Sediment Control (ESC) Guidelines - December 2003, will be used as the basis for developing an Erosion and Sedimentation Control Design Brief during detailed design.

1.7 ANALYSIS METHODOLOGY

Quantity Control

For each proposed facility, the Rational Method was used to determine the pre-construction uncontrolled peak flow rate (see Appendix B). The following equation was used:

 $Q_{x \text{ year}} = CIA/360$

Where:

C - permeability coefficient (unitless):	0.3 for open fields was used, 0.9 for new facilities;
I - rainfall intensity (mm/hour):	based on North York IDF curve data,
	Tc = 10 minutes pre, 7 minutes post construction;
A - catchment area (hectares):	area of facility in hectares.

City of Toronto harmonized IDF curves (presently not available) or North York District IDF curves should be used in the detailed designs.

Storage requirements using the Modified Rational Method have been provided in Appendix C. For the Finch West Station, release rates for the Humber River Watershed, Sub-Basin 46 have been provided by TRCA (provided below) and should be confirmed during detail design. Roof control (Zurn) release rates were considered for the Sheppard and York University Stations since roof leaders will discharge directly to the ground.

2-year	5-year	25-year	100-year

O:(1-33015347 Spadina Subway EA)Documents/03 Reports/99 Draft Versions/EA)Appendix/Appendix Y Stormwater Management/SWM Final Report Feb 7 06/013006 TTC Spadina Subway EA SWM Ret.doc URS Canada Inc. 6 Toronto Transit Commission

Environmental As	sessment		Stormwater Ma	anagement Report
Allowable	Q=7.745-	Q=11.468-	Q=17.381-	Q=22.973-
Release Rate:	0.762ln(A)	1.123ln(A)	1.690ln(A)	2.256ln(A)

Where for release rates: Q - unit flow (L/s/ha) - litres per second per hectare A - area in hectares (ha)

For the Steeles West Station, the ultimate SWM plan will be developed during detail design in accordance with OPA 620 requirements, and for the purposes of the interim SWM plan proposed at that Station, storage requirements are based on post to pre peak flow rates for all return periods.

For all proposed stations addressed in this SWM plan, the rational method was used to calculate peak flows. A pre-development drainage coefficient "C" of 0.3 was used, and a postdevelopment drainage coefficient "C" value of 0.9 was used. North York IDF curve coefficients (from the City of Toronto) were used as follows:

Coefficient	2-year	5-year	25-year	100-year
а	652.8	840.7	1082	1334
b	4	3	2	2
с	0.786	0.779	0.771	0.771

Ouality Control

Spadina Subway Extension

Quality control was not considered for the proposed Sheppard West and York University stations due to the absence of pollution sources at these sites (commuter parking is only being provided at the proposed Finch West and Steeles West stations). Proposed quality control for the Finch and Steeles West stations consists of Oil / Grit Separators (OGS) in a "treatment train" approach in accordance with the above noted criteria as applicable.

O:(1-33015347 Spadina Subway EA)Documents/03 Reports/09 Draft Versions/EA)Appendix/Appendix Y Stormwater Management/SWM Final Report Feb 7 06/013006 TTC Spadina Subway EA SWM Rot.doc URS Canada Inc.

7

2/7/2006

Spadina Subway Extension	
Environmental Assessment	

2/7/2006 Stormwater Management Report

Water Balance

Preliminary geotechnical information on the subsurface physical conditions (soil and groundwater) along the proposed subway route was conducted by Golder Associates Ltd. (Golder) and documented in their draft report "Geotechnical Investigation Report - Spadina Subway Extension Environmental Assessment" (December 2005). The following excerpt (page 16) summarizes the typical founding soils for the four proposed subway station base slabs:

Station	Estimated Elevation of Base Slab (m)	Founding Soil	Soil Type
GO/Sheppard Avenue	180	Silt; Clayey silt (Interstadial)	8; 9
Keele/Finch	175	Clayey Silt to Silty Clay Till; Clayey Silt (Interstadial)	11; 9
York University	175	Sandy Silt to Sand and Silt Till	12
Steeles Avenue	180	Clayey Silt to Silty Clay Till	11

Reference is made in this geotechnical report (page 12) to the average hydraulic conductivity of 1.4E-05 to 3.0E-05 cm/s within the cohesive and glacial till deposits. Although these preliminary soils investigations indicate soils not conducive to Water Balance measures, measures will need to be addressed for each station during detail design in accordance with the above noted criteria where feasible.

On-site SWMP's considered in the following plan include rooftop restrictors (at station buildings), exfiltration systems (proposed in a "treatment train" approach with oil / grit separators) and underground storage at the proposed parking lots at Finch and Steeles Stations (super pipe for the 2-year event). Additional SWMP's to be considered during detail design include rainwater harvesting, green roof technologies, absorbent landscaping, pervious pavement in parking lots and tree plantings and bushes. Additionally, the use of curb and gutter with catchbasins and exfiltration / infiltration systems should be considered.

The following summarizes the results of the hydraulic /hydrologic analysis and identifies the proposed stormwater management plan for each proposed station location.

Spadina Subway Extension Environmental Assessment

2/7/2006 Stormwater Management Report

CHAPTER 2.0 SHEPPARD AVENUE WEST STATION SWM PLAN

The Sheppard West Station, situated entirely within the Downsview Park lands, will be located at the southwest corner of the Bradford GO Line and Sheppard Avenue. New above ground facilities that will reduce the overall permeability within the study area include the new subway station building itself. Impervious areas associated with these new facilities are provided in Table 2.0. Refer to Exhibit 2.1 for a map of this station location including the existing drainage condition as identified from OBM maps and a site visit.

Table 2.0 - Above Ground Facilities at the Sheppard Avenue West Station

Facility	Impervious Area Proposed (ha)
New TTC Station Roof	0.2

The surface at the existing site drains generally to the north. Utility information provided by the City indicates that storm water is conveyed easterly along Sheppard Avenue through a series of storm sewers (900, 1050 mm diameter in the vicinity of the proposed station) eventually draining to the G. Ross Lord Dam and Reservoir to the north/north-east.

2.1 DESIGN REOUIREMENTS

Design of SWM facilities will be based on the criteria provided by the City of Toronto, the TTC, and TRCA as summarized in Sections 1.3 to 1.6 of this Report.

2.2 OUALITY CONTROL

Quality control was not considered for the proposed Sheppard West station due to the absence of pollution sources this site.

2.3 QUANTITY CONTROL

As indicated in Section 1.7, the Rational Method was used to determine the pre-construction uncontrolled 2 to 100-year peak flow rates. To ensure that the subject development will not have a negative impact on downstream conditions, it is necessary to control the post-development flows for each return period from 2 to 100 years to pre-development flows. For the TTC station building, rooftop storage is proposed. A separate GO Transit Environmental Assessment will be conducted for the stormwater management of the proposed new GO Transit platform.

O:\1-33015347 Spadina Subway EA\Documents\03 Reports\99 Draft Versions\EA\Appendix\Appendix Y Stormwater Management\SWM Final Report Feb 7 06\013006 TTC Spadina Subway EA SWM Rot.doc URS Canada Inc. 8

Toronto Transit Commission

O:\I-33015347 Spadina Subway EA\Documents|03 Reports|99 Draft Versions|EA\Appendix|Appendix Y Stormwater Management|SWM Final Report Feb 7 06|013006 TTC Spadina Subway EA SWM Rot.doc URS Canada Inc. 9 Toronto Transit Commission

2/7/2006 Stormwater Management Report

Exhibit 2.1 – Existing Drainage Conditions at the Proposed Sheppard West Station

Spadina Subway Extension Environmental Assessment

2/7/2006 Stormwater Management Report

Allowable release rates were provided by TRCA (Section 1.7); however, as downspouts will outlet at ground level, and as the TTC roof storage maximum controlled run-off is 42 l/s per hectare (TTC Standard Volume 1, Section 3.2), a maximum allowable release rate was set to (42 1/s) x (0.2 ha) = 8.4 1/s.

Results are summarized in Table 2.1.

Table 2.1 –	- Storage Requirements	s at the Sheppard Avenue	West Station
-------------	------------------------	--------------------------	--------------

Facility	Area (ha)	Return Period	Allowable Release Rate (l/s)	Q Uncontrolled Pre-Const. (1/s)	Q Uncontrolled Post-Const. (l/s)	Volume Required (m3)
TTC	0.2	2-year	8.4	13.7	49.6	22
Station Building	0.2	5-year	8.4	19.0	70.0	35
	0.2	25-year	8.4	26.6	99.5	53
	0.2	100-year	8.4	32.8	122.7	70

The proposed stormwater management plan for this station entails the use of quantity control through the use of Zurn Roof Control Drains in accordance with previously stated design criteria.

2.4 WATER BALANCE

As indicated in Section 1.7, the preliminary soils investigations in the vicinity of the Sheppard Ave. West station indicate soils may not be conducive to water balance measures. However, City of Toronto water balance requirements in accordance with Section 1.3.3 should be addressed during detail design.

2.5 EROSION AND SEDIMENT CONTROL

Erosion and Sediment Control will be addressed during detail design in accordance with applicable criteria in Section 1.3.2 above. During planning, it was confirmed by TRCA that criteria (c) Section 1.3.2 governs at this location.

O:(1-33015347 Spadina Subway EA)Documents(03 Reports(99 Draft Versions)EA)Appendix/Appendix Y Stormwater Management(SWM Final Report Feb 7 06)013006 TTC Spadina Subway EA SWM Rot.doc URS Canada Inc.

11

Toronto Transit Commission

Spadina Subway Extension	2/7/2006
Environmental Assessment	Stormwater Management Report

CHAPTER 3.0 FINCH WEST STATION SWM PLAN

The Finch West Station will be located at the intersection of Finch Avenue and Keele Street. New above ground facilities that will reduce the overall permeability of the study area include the new commuter parking lot to the east of Keele Street, the passenger pick -up and drop-off to the west of Keele Street, and the proposed bus terminal including the new roads. Impervious areas associated with these new facilities are provided in Table 3.0. Refer to Exhibit 3.1 for a map of this station location including the existing drainage condition as identified from OBM maps and a site visit.

Table 3.0 - Above ground Facilities at the Finch West Station

Facility	Impervious Area Proposed (ha)
Commuter Parking Lot	2.3
Passenger Pick-Up / Drop-Off	0.3
Bus Terminal / Roads / Station Building	1.2

According to drainage mosaics provided by the City, the surface at the existing site generally drains to the east and west from Keele Street, with the exception of a triangular area at the northeast quadrant of the Finch / Keele intersection which also drains to the west as indicated in Exhibit 3.1. The site is drained by storm sewers, with the area west of Keele street draining towards the 5000 x 3000 mm CSP under Finch Avenue, ultimately released to the Black Creek; to the east, storm water is conveved via storm sewers and creek to the G. Lord Ross Reservoir and Dam.

3.1 DESIGN REQUIREMENTS

Design of SWM facilities will be based on criteria provided by the City of Toronto, the TTC, and TRCA as summarized in Sections 1.3 to 1.6 of this Report.

3.2 QUALITY CONTROL

To address the requirements for quality treatment on the site, oil grit separators are proposed in a treatment train approach in coordination to include for instance bio-swales and infiltration systems. Proposed flow patterns are indicated in Exhibit 3.2.

O/1-33015347 Spadina Subway EA/Documents/03 Reports/99 Draft Versions/EA/Appendix/Appendix Y Stormwater Management/SWM Final Report Feb 7 06/013006 TTC Spadina Subway EA/Documents/03 Reports/99 Draft Versions/EA/Appendix/Appendix Y Stormwater Management/SWM Final Report Feb 7 06/013006 TTC Spadina Subway URS Canada Inc. 12 Toronto Transit Commission Spadina Subway Extension Environmental Assessment

2/7/2006 Stormwater Management Report

Exhibit 3.1 - Existing Drainage Conditions at the Proposed Finch West Station

O:/1-33015347 Spadina Subway EA/Documents/03 Reports/99 Draft Versions/EA/Appendix/Appendix Y Stormwater Management/SWM Final Report Feb 7 06/013006 TTC Spadina Subway EA/SWM Rit.doc URS Canada Inc. 13

2/7/2006 Stormwater Management Report

Exhibit 3.2 – Proposed Drainage Conditions at the Proposed Finch West Station

Spadina Subway Extension Environmental Assessment 2/7/2006 Stormwater Management Report

3.3 QUANTITY CONTROL

For the parking lot, passenger pick-up / drop-off and bus terminal, parking lot conveyance control is suggested. Results are summarized in Tables 3.1, 3.2, and 3.3.

Facility	Area (ha)	Return Period	Allowable Release Rate (l/s)	Q Uncontrolled Pre-Const. (l/s)	Q Uncontrolled Post-Const. (1/s)	Volume Required (m3)
Comm.	2.3	2-year	16.4	157.3	570.5	498
Parking Lot	2.3	5-year	24.2	218.7	804.7	648
	2.3	25-year	36.7	305.5	1144.3	840
	2.3	100-year	48.5	376.7	1410.7	1013

Table 3.2 – Passenger Pick-up/Drop-off Storage Requirements at the Finch West Station

Facility	Area (ha)	Return Period	Allowable Release Rate (l/s)	Q Uncontrolled Pre-Const. (l/s)	Q Uncontrolled Post-Const. (1/s)	Volume Required (m3)
Pass.	0.3	2-year	2.6	20.5	74.4	61
Pick-Up Drop-	0.3	5-year	3.8	28.5	105.0	80
Off	0.3	25-year	5.8	39.9	149.3	103
	0.3	100-year	7.7	49.1	184.0	124

O\1-33015347 Spadina Subway EA\Documents/03 Reports/99 Draft Versions/EA\Appendix\Appendix Y Stormwater Management/SWM Final Report Feb 7 06/013006 TTC Spadina Subway EA SWM R0.doc

URS Canada Inc.

15

Toronto Transit Commission

Spadina Subway Extension						2/7/2006			
Environmental Assessment						Stormwater Management Report			
Table 3.3 – Bus Terminal Storage Requirements at the Finch West Station									
-						2	** 1		

Facility	Area (ha)	Return Period	Allowable Release Rate (l/s)	Q Uncontrolled Pre-Const. (l/s)	Q Uncontrolled Post-Const. (1/s)	Volume Required (m3)
Bus	1.2	2-year	9.1	82.1	297.7	255
Roads /	1.2	5-year	13.5	114.1	419.9	331
Station Building	1.2	25-year	20.5	159.4	597.0	429
	1.2	100-year	27.1	196.5	736.0	517

The proposed stormwater management plan for this station entails the use of quantity control through the use of Zurn Roof Control Drains in accordance with previously stated design criteria. To further satisfy TTC site drainage requirements (see Section 1.5 above) since no ponding will be permitted under the 2-year storm event, it is proposed that the post-construction 2-year storm event be captured in a "super-pipe". Refer to Exhibit 3.2 for a map of this station location including the proposed drainage condition. It is proposed that Oil / Grit Separators (OGS) be used in a "treatment train" approach, including exfiltration trenches located in grassed boulevard areas adjacent to parking lots prior to entry into City sewer system (as the only available space is in the Hydro Corridor, this will require approval from Ontario Hydro).

3.4 WATER BALANCE

As indicated in Section 1.7, the preliminary soils investigations in the vicinity of the Finch West station indicate soils may not be conducive to water balance measures. However, City of Toronto water balance requirements in accordance with Section 1.3.3 should be addressed during detail design.

3.5 EROSION AND SEDIMENT CONTROL

Erosion and Sediment Control will be addressed during detail design in accordance with applicable criteria in Section 1.3.2 above. During planning, it was confirmed by TRCA that criteria (d) Section 1.3.2 governs at this location, however, TRCA also requested that the runoff from a 25 mm storm be detained on-site and released over a minimum of 48 hours.

O:\1-33015347 Spadina Subway EA\Documents\03 Reports\99 Draft Versions\EA\Appendix\Appendix Y Stormwater Management\SWM Final Report Feb 7 06\013006 TTC Spadina Subway EA SWM Rot.doc 16 Toronto Transit Commission

URS Canada Inc.

Spadina Subway Extension 2/7/2006 Environmental Assessment Stormwater Management Report

CHAPTER 4.0 YORK UNIVERSITY STATION SWM PLAN

The York University Station will be located at the east end of the "commons" within the University campus. The Subway station will be a below ground facility. New above ground facilities that will reduce the overall permeability of the study area include the substation building, as well as two entrances to the subway. Impervious areas associated with these new facilities are provided in Table 4.0. Refer to Exhibit 4.1 for a map of this station location including the existing drainage condition as identified from OBM maps and a site visit.

Table 4.0 - Above ground Facilities at the York University Station

Facility	Impervious Area Proposed (ha)
Substation Building and Entrances	0.1

Surface water in the vicinity of the proposed facility drains through a series of storm sewers to the pond at Pond Road, then ultimately to the Black Creek. A ditch inlet was noted in the grassed area of the "Common", as well as on the east side of Ian MacDonald Boulevard within the existing grassed swale.

4.1 DESIGN REOUIREMENTS

Design of SWM facilities will be based on criteria provided by the City of Toronto, the TTC, and TRCA as summarized in Sections 1.3 to 1.6 of this Report.

4.2 OUALITY CONTROL

Quality control was not considered for the proposed York University station due to the absence of pollution sources (new facilities include only building roofs) at this site.

4.3 **QUANTITY CONTROL**

As indicated in Section 1.7, the Rational Method was used to determine the pre-construction uncontrolled 2 to 100-year peak flow rates. To ensure that the subject development will not have a negative impact on downstream conditions, it is necessary to control the post-development flows for each return period from 2 to 100 years to pre-development flows. For the TTC station building, rooftop storage is proposed and summarized in Table 4.1. Although peak runoff will be controlled for post to pre for the 2 to 100 year events, York University's Stormwater Management Plan should be consulted for any additional requirements prior to detailed design.

0.1/-33015347 Spadina Subway EA\Documents\03 Reports\09 Draft Versions\EA\Appendix\Appendix Y Stormwater Management\SWM Final Report Feb 7 06/013006 TTC Spadina Subway EA SWM Rot.doc URS Canada Inc. 17 Toronto Transit Commission

2/7/2006 Stormwater Management Report

Exhibit 4.1 – Existing Drainage Conditions at the Proposed York University Station

Spadina Subway Extension Environmental Assessment 2/7/2006 Stormwater Management Report

Allowable release rates were provided by TRCA (Section 1.7); however, as downspouts will outlet at ground level, and as the TTC roof storage maximum controlled run-off is 42 l/s per hectare (TTC Standard Volume 1, Section 3.2), a maximum allowable release rate was set to (42 l/s) x (0.1 ha) = 4.2 l/s.

Table 4.1 –Storage	Requirements at the	York	University	Station
--------------------	---------------------	------	------------	---------

Facility	Area (ha)	Return Period	Allowable Release Rate (l/s)	Q Uncontrolled Pre-Const. (1/s)	Q Uncontrolled Post-Const. (l/s)	Volume Required (m3)
TTC	0.1	2-year	4.2	6.8	24.8	11
Station Building	0.1	5-year	4.2	9.5	35.0	17
	0.1	25-year	4.2	13.3	49.8	26
	0.1	100-year	4.2	16.4	61.3	35

The proposed stormwater management plan for this station entails the use of quantity control through the use of Zurn Roof Control Drains in accordance with previously stated design criteria

4.4 WATER BALANCE

As indicated in Section 1.7, the preliminary soils investigations in the vicinity of the York University station indicate soils may not be conducive to water balance measures. However, City of Toronto water balance requirements in accordance with Section 1.3.3 should be addressed during detail design.

4.5 EROSION AND SEDIMENT CONTROL

Erosion and Sediment Control will be addressed during detail design in accordance with applicable criteria in Section 1.3.2 above. During planning, it was confirmed by TRCA that criteria (c) Section 1.3.2 governs at this location.

Oil-13015347 Spedina Sabway EA/Documents/03 Reports/99 Draft Versions/EA/Appendix/Appendix Y Stormwater Management/SWM Final Report Feb 7 06/013066 TTC Spadina Sabway EA/SWM Rpt.doc EA/SWM Rpt.doc URS Canada Inc. 19 Toronto Transit Commission

Spadina Subway Extension	2/7/2006
Environmental Assessment	Stormwater Management Report

CHAPTER 5.0 STEELES WEST STATION SWM PLAN

The Steeles West Station will be located at the intersection of Steeles Avenue and Northwest Gate. New above ground facilities that will reduce the overall permeability of the study area include two new commuter parking lots located within the Hydro corridor north of Steeles Avenue, one bus terminal located north of Steeles Avenue including passenger pick-up and dropoff facilities and entrances. Impervious areas associated with these new facilities are provided in Table 5.0. One bus terminal is to be located south of Steeles Avenue utilizing an existing parking lot, and thereby not increasing the ground imperviousness. Refer to Exhibit 5.1 for a map of this station location including the existing drainage condition as identified from OBM maps and a site visit.

Table 5.0 -	Above ground	Facilities at	the Steeles	West Station
1 able 5.0 -	Above ground	racinues at	the Steeles	west station

Facility	Impervious Area Proposed (ha)
New East Commuter Parking Lot	5.2
New West Commuter Parking Lot including Passenger Pick-Up and Drop-Off	4.9 *
New Inter-Regional Bus Terminals (north of Steeles Avenue) / Station Buildings	2.1
New Inter-Regional Bus Terminal (south of Steeles Avenue) / Station Buildings	Area presently paved

* Includes a portion of facilities included in York Regions Highway 7 Transitway EA.

Presently the subject land, north of Steeles and south of the Hydro corridor, is an open field where Northwest Gate intersects Steeles Avenue at an unsignalized "T" intersection. Surface drainage in the area of the proposed facility is to the south, to two sets of existing storm sewers, one under Steeles Avenue, and one just north of the right-of-way. The storm sewer under Steeles Avenue (600 to 1500 mm diameter) drains to TRCA's pond at Black Creek Pioneer Village; to the north to the right-of-way, the storm sewer (1650 to 1800 mm diameter) drains to a pond north of Steeles Avenue near Jane Street. It is assumed that the building to the east of the proposed facility manages it's own stormwater. Therefore the property boundary of the proposed parking facilities coincides with the drainage boundaries.

O:(1-33015347 Spadina Subway EA)Documents/03 Reports/99 Draft Versions/EA)Appendix/Appendix Y Stormwater Management/SWM Final Report Feb 7 06/013006 TTC Spadina Subway EA SWM Ret.doc 20

URS Canada Inc.

Toronto Transit Commission

Spadina Subway Extension Environmental Assessment

2/7/2006 Stormwater Management Report

Exhibit 5.1 - Existing Drainage Conditions at the Proposed Steeles West Station

O:(1-33015347 Spadina Subway EA)Documents[03 Reports[99 Draft Versions]EA)Appendix/Appendix Y Stormwater Management[SWM Final Report Feb 7 06]013006 TTC Spadina Subway EA SWM Rtt.doc URS Canada Inc. 21

Spadina Subway Extension	2/7/2006
Environmental Assessment	Stormwater Management Report

5.1 DESIGN REQUIREMENTS

Design of SWM facilities will be based on the criteria provided by the City of Toronto, the TTC, TRCA and the City of Vaughan, as summarized in Sections 1.3 to 1.6 of this Report.

According to TRCA, the existing stormwater management pond (CFN 8133, TRCA Pond File 42.0) located north of Steeles at Jane Street is inadequate by present day standards, and there is little room available to expand the pond for the redevelopment of the industrial area to the north of Steeles Avenue including the Steeles West Station. The pond is presently a peak flow attenuation facility only. Although it is not presently possible within the scope of this study to provide a definitive SWM plan for the Steeles West Station, a detailed SWM plan for the Steeles West Station will need to be integrated into a comprehensive stormwater Management master plan, once developed, in accordance with development (OPA 620) in the area.

5.2 QUALITY CONTROL

To address the **interim** requirements for quality treatment on the site (prior to a developed Master SWM Plan for the area in accordance with OPA 620), oil grit separators are proposed in a treatment train approach, to include for instance bio-swales and infiltration systems. Proposed flow patterns are indicated in **Exhibit 5.2**.

5.3 QUANTITY CONTROL

For the parking lot, passenger pick-up / drop-off and bus terminal, in-lieu of a definitive SWM Master Plan for the area, interim parking lot conveyance control is suggested. Results are summarized in **Tables 5.1, 5.2, and 5.3.** Although the east and west commuter parking lot areas approach and slightly exceed the criteria for Rational Method calculations (Section 1.3.2 above) the Rational Method was used since some portion of these facilities are actually addressed in York Region's Highway 7 Transitway EA. Furthermore, the impacts from new roads will also be addressed separately through York Region's Hwy 7 Transitway Environmental Assessment.

Facility	Area (ha)	Return Period	Q Uncontrolled Pre-Const. (l/s)	Q Uncontrolled Post-Const. (l/s)	Volume Required (m3)		
East	5.2	2-year	355.7	1289.8	450		
Lot	5.2	5-year	494.4	1819.4	599		
	5.2	25-year	690.8	2587.0	828		
	5.2	100-year	851.7	3189.5	1020		
Table 5.2 West Commuter Dorking Let Stange Dequirements at the Stanley West Station							

Table 5.2 – West Commuter Parking Lot Storage Requirements at the Steeles West Station

0.11-3303547 Spedina Sabway EADocument/03 Reports/09 Draft Versions/EA/Appendix Y Stormwater Management/SWM Final Report Feb 7 06/013006 TTC Spadina Sabway EA SWM Rpt.dc: URS Canada Inc. 22 Toronto Transit Commission

	nem	Stormwater Management Report			
Area (ha)	Return Period	Q Uncontrolled Pre-Const. (l/s)	Q Uncontrolled Post-Const. (l/s)	Volume Required (m3)	
4.9	2-year	335.2	1215.4	411	
4.9	5-year	465.8	1714.4	565	
4.9	25-year	650.9	2437.8	780	
4.9	100-year	802.5	3005.5	961	
	Area (ha) 4.9 4.9 4.9 4.9 4.9	Area (ha)Return Period4.92-year4.95-year4.925-year4.9100-year	Area (ha)Return PeriodQ Uncontrolled Pre-Const. (I/s)4.92-year335.24.95-year465.84.925-year650.94.9100-year802.5	Area (ha)Return PeriodQ Uncontrolled Pre-Const. (1/s)Q Uncontrolled Post-Const. (1/s)4.92-year335.21215.44.95-year465.81714.44.925-year650.92437.84.9100-year802.53005.5	

2/7/2006

Table 5.3 – Bus Terminal Storage Requirements at the Steeles West Station

Faci	lity	Area (ha)	Return Period	Q Uncontrolled Pre-Const. (l/s)	Q Uncontrolled Post-Const. (l/s)	Volume Required (m3)
Bus	• • •	2.1	2-year	143.7	520.9	176
Stati	Terminal/ Station	2.1	5-year	199.6	734.8	242
Building	2.1	25-year	279.0	1044.8	334	
		2.1	100-year	343.9	1288.1	412

To further satisfy TTC site drainage requirements (see Section 1.5 above) since no ponding will be permitted under the 2-year storm event, it is proposed that the post-construction 2-year storm event be captured in a "super-pipe" or in swales or depressions prior to release. Refer to **Exhibit 5.2** for a map of this station location including the proposed drainage condition. It is proposed that this interim solution (ultimate SWM solution to be part of the SWM Master Plan in accordance with OPA 620), Oil / Grit Separators (OGS) be used in a "treatment train" approach, including exfiltration trenches located in grassed boulevard areas adjacent to parking lots).

5.4 WATER BALANCE

Spadina Subway Extension

As indicated in Section 1.7, the preliminary soils investigations in the vicinity of the Steeles West station indicate soils may not be conducive to water balance measures. However, City of Toronto water balance requirements according to Section 1.3.3 will be addressed in detail design.

5.5 EROSION AND SEDIMENT CONTROL

Erosion and Sediment Control will be addressed during detail design in accordance with applicable criteria in Section 1.3.2 above. During planning, it was confirmed by TRCA that criteria (d) Section 1.3.2 governs at this location, however, TRCA also requested that the runoff from a 25 mm storm be detained on-site and released over a minimum of 48 hours.

0:1:30153/f Spalina Subway EA/Documents(0) Reports(99 Draft Versions/EA/Appendix/Appendix Y Stormwater Management/SWM Final Report Feb 7 06(0) 1306 TTC Spadina Subway EA/SWM Rpt.doc VLRS Canada Inc. 23 Toronto Transit Commission

2/7/2006 Stormwater Management Report

Exhibit 5.2 – Proposed Drainage Conditions at the Proposed Steeles West Station

0:1-1301347 Spadina Subway EA/Documents/03 Reports/99 Draft Versions/EA/Appendix Y Stormwater Management/SWM Final Report Feb 7 06/013006 TTC Spadina Subway EA/SWM Ref. do: URS Canada Inc. 24 Toronto Transit Commission Spadina Subway Extension Environmental Assessment 2/7/2006 Stormwater Management Report

CHAPTER 6.0 CONSTRUCTION IMPACTS AND MITIGATION AND MONITORING

During construction activities including dewatering, erosion and sedimentation potential will be addressed.

Governmental documentation related to erosion control and sedimentation exists in the following three forms: legislation, guidelines and by-laws. Guidelines used within TRCA's jurisdiction include current editions of the following:

- MNR Technical Guideline: Erosion and Sediment Control;
- GTA Conservation Authorities Erosion & Sediment Control Guidelines for Urban Construction;
- City of Toronto Sewer Use B-Law; and,
- MTO Drainage Management Manual.

Mitigation will be addressed in contract documents according to TRCA's Erosion and Sedimentation guidelines with explains the design, function, installation procedure, maintenance procedure, and removal procedure for each of the following ESC measures including, but not limited to sediment traps, interceptor swales/dykes, sediment control fences, straw bales, sodding etc.

Prior to construction, the contractor is required to submit comprehensive environmental controls and methods plan to address, among other elements, effluent (water control) as per TTC's Master Specification 05-06-28 – Section 01575 – subsection 6. The effectiveness of this plan is monitored during a demonstration of the process that is undertaken before the Work can commence on site. A representative of TTC will undertake monitoring of plan compliance.

The construction process will result in exposed soil in areas such as the Hydro corridors during the construction of the commuter parking lots or the Downsview lands during the open cut construction of the running structure. Sediment and erosion control measures will be inspected regularly by TTC to ensure that these measures are maintained in proper working order until all areas are fully stabilized.

01:33015347 Spudina Subway EA/Documents/03 Reports/99 Draft Versions/EA/Appendix Y Stormwater Management/SWM Final Report Feb 7 06/013006 TTC Spadina Subway EA/SWM Redoc EA/SWM Redoc URS Canada Inc. 25 Toronto Transit Commission

Spadina Subway Extension	2/7/2006
Environmental Assessment	Stormwater Management Report

CHAPTER 7.0 CONCLUSIONS

The preliminary analysis as summarized in this report indicates that the proposed stormwater management plan for each of the 3 proposed subway stations, namely Sheppard West, Keele Street, and York University Stations will satisfy design requirements of the TTC, the City of Toronto and TRCA. The SWM plan for the Steeles West Station will require further development during detail design in accordance with a SWM Master Plan to be developed in response to development north of Steeles Avenue.

Further refinements to this plan will be required during the detailed design phase of the subway extension project.

O213301547 Stadina Subway EA(Documents/03 Reports/99 Draft Versions/EA/Appendix Y Stormwater Management/SWM Final Report Feb 7 06/013066 TTC Spadina Subway EA SWMRpt.doc URS Canada Inc. 26 Toronto Transit Commission

APPENDICES

APPENDIX A TRCA's Flood Flow Criteria Map

APPENDIX B RATIONAL METHOD CALCULATIONS

Sheppard

2-Year Pre-Development Peak Flow

Rational M	Raint	all Intensity		
Area =	0.20	ha	Co	efficients
"C" =	0.30		Yo	rk Region
Tc =	10.00	min	2 Y	ear Storm
AC =	0.060		a =	652.8
2.78*AC =	0.167		b =	4.00
Rainfall Intensity =	82.02	mm/hr	C =	0.786
			•	
Runoff =	13.7	l/s		

Predevelopment

5-Year Pre-Development Peak Flow

Rational M	Rainfall Intensity				
Area =	0.20	ha	1	Co	oefficients
"C" =	0.30			York Region	
Tc =	10.00	min		5 Y	ear Storm
AC =	0.060			a =	840.7
2.78*AC =	0.167			b =	3.00
Rainfall Intensity =	113.99	mm/hr		C =	0.779
Runoff =	19.0	l/s			

25-Year Pre-Development Peak Flow

Rational M		Rain	fall Intensity		
Area =	0.20	ha		Coefficients	
"C" =	0.30			York Region	
Tc =	10.00	min		25 \	Year Storm
AC =	0.060			a =	1082
2.78*AC =	0.167			b =	2.00
Rainfall Intensity =	159.29	mm/hr		C =	0.771
Runoff =	26.6	l/s	-		

100-Year Pre-Development Peak Flow

Rational Method			Rain	fall Intensity
Area =	0.20	ha	Co	oefficients
"C" =	0.30		Yo	rk Region
Tc =	10.00	min	100	Year Storm
AC =	0.060		a =	1334
2.78*AC =	0.167		b =	2.00
Rainfall Intensity =	196.38	mm/hr	C =	0.771
Runoff =	32.8	l/s		

URS Canada Inc Spadina Subway Ext. SWM

Finch Parking	Predevelopment
2-Year Pre-Developme	nt Peak Flow

Rational M	Rational Method			Rainf	all Intensity
Area =	2.30	ha		Co	efficients
"C" =	0.30			Yo	rk Region
Tc =	10.00	min		2 Y	ear Storm
AC =	0.690		1	a =	652.8
2.78*AC =	1.918			b =	4.00
Rainfall Intensity =	82.02	mm/hr		C =	0.786
			•		
Runoff =	157.3	l/s			

5-Year Pre-Development Peak Flow

	Rational Method				
	Area =	2.30	ha		
	"C" =	0.30			
	Tc =	10.00	min		
	AC =	0.690			
	2.78*AC =	1.918			
R	ainfall Intensity =	113.99	mm/hr		

Runoff = 218.7 I/s

25-Year Pre-Development Peak Flow

Rational M		Rainf	2		
Area =	2.30	ha	1	Co	e
"C" =	0.30			Yor	Ī
Tc =	10.00	min		25 Y	(
AC =	0.690			a =	
2.78*AC =	1.918			b =	
Rainfall Intensity =	159.29	mm/hr		C =	
			-		

Runoff = 305.5 l/s

100-Year Pre-Development Peak Flow Rational Method

Rational		Rain	d		
Area =	2.30	ha		Co	e
"C" =	0.30			Yo	rk
Tc =	10.00	min		100	Y
AC =	0.690			a =	
2.78*AC =	1.918			b =	
Rainfall Intensity =	196.38	mm/hr		C =	
			-		

Runoff = 376.7 I/s

2 of 8

Raint	fall Intensity
Co	efficients
Yo	rk Region
5 Y	ear Storm
a =	840.7
b =	3.00
C =	0.779

all Intensity
efficients
k Region
'ear Storm
1082
2.00
0.771

Raint Co	Rainfall Intensity Coefficients			
Yo	rk Region			
100	Year Storm			
a =	1334			
b =	2.00			
C =	0.771			

Finch PPUDO

Predevelopment

5-Year Pre-Development Peak Flow

Rational M	Rational Method			Rainfall Intensity		
Area =	0.30	ha		Co	oefficients	
"C" =	0.30			Yo	rk Region	
Tc =	10.00	min		5 Y	ear Storm	
AC =	0.090		1	a =	840.7	
2.78*AC =	0.250			b =	3.00	
Rainfall Intensity =	113.99	mm/hr		C =	0.779	
Runoff =	28.5	l/s	-			

25-Year Pre-Development Peak Flow

Rational Method				Rainf	all Intensity
Area =	0.30	ha		Co	efficients
"C" =	0.30			Yor	k Region
Tc =	10.00	min		25 Y	'ear Storm
AC =	0.090			a =	1082
2.78*AC =	0.250			b =	2.00
Rainfall Intensity =	159.29	mm/hr		C =	0.771
Runoff =	39.9	l/s	-	-	

100-Year Pre-Development Peak Flow

Rational N	lethod			Rain	fall Intensity
Area =	0.30	ha	1	Cc	oefficients
"C" =	0.30			Yo	rk Region
Tc =	10.00	min		100	Year Storm
AC =	0.090			a =	1334
2.78*AC =	0.250			b =	2.00
Rainfall Intensity =	196.38	mm/hr		C =	0.771
			-		
Runoff =	49.1	l/s			

URS Canada Inc Spadina Subway Ext. SWM

Finch Bus Terminal Predevelopment

2-Year Pre-Development Peak Flow

Rational M	lethod		Rainf	fall Intensity
Area =	1.20	ha	Co	efficients
"C" =	0.30		Yo	rk Region
Tc =	10.00	min	2 Y	ear Storm
AC =	0.360		a =	652.8
2.78*AC =	1.001		b =	4.00
Rainfall Intensity =	82.02	mm/hr	C =	0.786
Runoff =	82.1	l/s		

5-Year Pre-Development Peak Flow

- Y ea	ir Pre-Development Pe	ak Flow				
	Rational M		Rainf	а		
	Area =	1.20	ha		Co	e
	"C" =	0.30			Yo	rk
	Tc =	10.00	min		5 Y	e
	AC =	0.360			a =	
	2.78*AC =	1.001			b =	
	Rainfall Intensity =	113.99	mm/hr		C =	
				•		

Runoff = 114.1 I/s

25-Year Pre-Development Peak Flow

23-Teal TTe-Development	cakilow				
Rational M	Rational Method			Raint	fall Intensity
Area =	1.20	ha		Co	oefficients
"C" =	0.30			Yo	rk Region
Tc =	10.00	min		25 \	ear Storm
AC =	0.360			a =	1082
2.78*AC =	1.001			b =	2.00
Rainfall Intensity =	159.29	mm/hr		C =	0.771
Runoff =	159.4	l/s	- ,		

100-Year Pre-Development Peak Flow

Rational M	Rainf	З		
Area =	1.20	ha	Co	e
"C" =	0.30		Yor	ĺ
Tc =	10.00	min	100 \	ŕ
AC =	0.360		a =	
2.78*AC =	1.001		b =	
Rainfall Intensity =	196.38	mm/hr	C =	

Runoff = 196.5 I/s

3	of	8
---	----	---

all Intensity					
efficients					
rk Region					
ear Storm					
840.7					
3.00					
0.779					

all Intensity efficients					
k Region Year Storm					
1334					
2.00					
0.771					

York University

Predevelopment

2-Yea	ar Pre-Development Pe	ak Flow				
	Rational Method				Rainf	all Intensity
	Area =	0.10	ha		Co	efficients
	"C" =	0.30			Yo	rk Region
	Tc =	10.00	min		2 Y	ear Storm
	AC =	0.030			a =	652.8
	2.78*AC =	0.083			b =	4.00
	Rainfall Intensity =	82.02	mm/hr		C =	0.786
				-		
	Runoff =	6.8	l/s			

5-Year Pre-Development Peak Flow

Rational M	lethod			Raint	all Intensity
Area =	0.10	ha		Co	efficients
"C" =	0.30			Yo	rk Region
Tc =	10.00	min		5 Y	ear Storm
AC =	0.030			a =	840.7
2.78*AC =	0.083			b =	3.00
Rainfall Intensity =	113.99	mm/hr		C =	0.779
Runoff =	9.5	l/s	-		

25-Year Pre-Development Peak Flow

Rational Method				Rainfall Intensity	
Area =	0.10	ha	1	Co	oefficients
"C" =	0.30			Yo	rk Region
Tc =	10.00	min		25 \	ear Storm
AC =	0.030		1	a =	1082
2.78*AC =	0.083			b =	2.00
Rainfall Intensity =	159.29	mm/hr		C =	0.771
Runoff =	13.3	l/s	_ '		

100-Year Pre-Development Peak Flow

Rational M	/lethod		Rain	fall Intensity
Area =	0.10	ha	Co	oefficients
"C" =	0.30		Yo	rk Region
Tc =	10.00	min	100	Year Storm
AC =	0.030		a =	1334
2.78*AC =	0.083		b =	2.00
Rainfall Intensity =	196.38	mm/hr	C =	0.771
Runoff =	16.4	l/s		

URS Canada Inc Spadina Subway Ext. SWM

Steeles East Parking Predevelopment

2-Year Pre-Development Peak Flow

Rational N	lethod			Raint	fall Intensity
Area =	5.20	ha]	Co	oefficients
"C" =	0.30			Yo	rk Region
Tc =	10.00	min		2 Y	ear Storm
AC =	1.560]	a =	652.8
2.78*AC =	4.337	1		b =	4.00
Rainfall Intensity =	82.02	mm/hr		C =	0.786
Runoff =	355.7	l/s	• •		

5-Year Pre-Development Peak Flow

Rational Method				Rainfa
Area =	5.20	ha		Co
"C" =	0.30			Yor
Tc =	10.00	min		5 Ye
AC =	1.560			a =
2.78*AC =	4.337			b =
Rainfall Intensity =	113.99	mm/hr		C =
Runoff =	494.4	l/s		
	Rational M Area = "C" = Tc = AC = 2.78*AC = Rainfall Intensity = Runoff =	Rational Method Area = 5.20 "C" = 0.30 Tc = 10.00 AC = 1.560 2.78*AC = 4.337 Rainfall Intensity = 113.99 Runoff = 494.4	Rational Method Area = 5.20 ha "C" = 0.30 min Tc = 10.00 min AC = 1.560 2.78*AC = 4.337 Rainfall Intensity = 113.99 mm/hr Runoff = 494.4 I/s	Rational Method Area = 5.20 ha "C" = 0.30 min Tc = 10.00 min AC = 1.560 2.78*AC = 4.337 Rainfall Intensity = 113.99 mm/hr Runoff = 494.4 I/s

25-Year Pre-Development Peak Flow

Rational Method			Raint	fall Intensity
Area =	5.20	ha	Coefficients	
"C" =	0.30		York Region	
Tc =	10.00	min	25 Year Storm	
AC =	1.560		a =	1082
2.78*AC =	4.337		b =	2.00
Rainfall Intensity =	159.29	mm/hr	C =	0.771
Runoff =	690.8	l/s		

100-Year Pre-Development Peak Flow

Rational Method				Rainf	6	
Area =	5.20	ha	1	Co	e	
"C" =	0.30			Yor	ſ	
Tc =	10.00	min		100 `	Y	
AC =	1.560			a =		
2.78*AC =	4.337			b =		
Rainfall Intensity =	196.38	mm/hr		C =		
					-	

Runoff = 851.7 l/s

all Intensity					
efficients					
rk Region					
ear Storm					
840.7					
3.00					
0.779					

all Intensity				
efficients				
k Region				
Year Storm				
1334				
2.00				
0.771				

Steeles West Parking Predevelopment

2-Year Pre-Development Peak Flow

Rational Method				Rain	fall Intensity
Area =	4.90	ha	1	Coefficients	
"C" =	0.30			York Region	
Tc =	10.00	min		2 Year Storm	
AC =	1.470		1	a =	652.8
2.78*AC =	4.087			b =	4.00
Rainfall Intensity =	82.02	mm/hr		C =	0.786
			-		
Runoff =	335.2	l/s			

5-Year Pre-Development Peak Flow

Rational Method			Rain	fall Intensity
Area =	4.90	ha	Coefficients	
"C" =	0.30		York Region	
Tc =	10.00	min	5 Year Storm	
AC =	1.470		a =	840.7
2.78*AC =	4.087		b =	3.00
Rainfall Intensity =	113.99	mm/hr	C =	0.779

Runoff = 465.8 I/s

25-Year Pre-Development Peak Flow

Rational Method				Rainfall Intensity		
Area =	4.90	ha		Coefficients		
"C" =	0.30			York Region		
Tc =	10.00	min		25 Y	'ear Storm	
AC =	1.470			a =	1082	
2.78*AC =	4.087			b =	2.00	
Rainfall Intensity =	159.29	mm/hr		C =	0.771	
Runoff =	650.9	l/s	_	-		

100-Year Pre-Development Peak Flow

Rational Method				Rainfall Intensity		
Area =	4.90	ha		Coefficients		
"C" =	0.30			York Region		
Tc =	10.00	min		100 `	Year Storm	
AC =	1.470			a =	1334	
2.78*AC =	4.087			b =	2.00	
Rainfall Intensity =	196.38	mm/hr		C =	0.771	
Runoff =	802.5	l/s	-			

URS Canada Inc Spadina Subway Ext. SWM

Steeles Bus Terminal Predevelopment

2-Year Pre-Development Peak Flow

Rational M	ſ		
Area =	2.10	ha	
"C" =	0.30		ſ
Tc =	10.00	min	
AC =	0.630		ſ
2.78*AC =	1.751		
Rainfall Intensity =	82.02	mm/hr	
Runoff =	143.7	l/s	

Rainfa Coe York 2 Ye a = b = c =

5-Year Pre-Development Peak Flow

Delit
Rainfa
Coe
Yor
5 Ye
a =
b =
C =

25-Year Pre-Development Peak Flow							
	Rational Method				Rainfa		
	Area =	2.10	ha		Coe		
	"C" =	0.30			Yor		
	Tc =	10.00	min		25 Y		
	AC =	0.630		1	a =		
	2.78*AC =	1.751			b =		
	Rainfall Intensity =	159.29	mm/hr		C =		
				-			
	D.u. off	070 0	1/-				

Runoff = 279.0 l/s

100-Year Pre-Development Peak Flow

Rational M	lethod			Rainf	6		
Area =	2.10	ha		Co	e		
"C" =	0.30			Yo	ſ		
Tc =	10.00	min		100`	Y		
AC =	0.630			a =			
2.78*AC =	1.751			b =			
Rainfall Intensity =	196.38	mm/hr		C =			
			-		-		

Runoff = 343.9 l/s

7 of 8

all Intensity
efficients
rk Region
ear Storm
652.8
4.00
0.786

all Intensity				
efficients				
rk Region				
ear Storm				
840.7				
3.00				
0.779				

all Intensity					
efficients					
rk Region					
'ear Storm					
1082					
2.00					
0.771					

all Intensity				
efficients				
rk Region				
Year Storm				
1334				
2.00				
0.771				

Sheppard

2-Year Pre-Development Peak Flow

Rational Method			Rain	fall Intensity
Area =	0.20	ha	Co	oefficients
"C" =	0.90		Yo	rk Region
Tc =	7.00	min	2 Y	ear Storm
AC =	0.180		a =	652.8
2.78*AC =	0.500		b =	4.00
Rainfall Intensity =	99.14	mm/hr	C =	0.786
- <i>"</i>		.,		
Runoff =	49.6	I/S		

Post Development

5-Year Pre-Development Peak Flow

Rational Method			Raint	fall Intensity
Area =	0.20	ha	Co	oefficients
"C" =	0.90		Yo	rk Region
Tc =	7.00	min	5 Y	ear Storm
AC =	0.180		a =	840.7
2.78*AC =	0.500		b =	3.00
Rainfall Intensity =	139.84	mm/hr	C =	0.779
Runoff =	70.0	l/s	 	

25-Year Pre-Development Peak Flow

Rational Method				Rain	fall Intensity
Area =	0.20	ha		Co	oefficients
"C" =	0.90			Yo	rk Region
Tc =	7.00	min		ב25 א	ear Storm
AC =	0.180			a =	1082
2.78*AC =	0.500			b =	2.00
Rainfall Intensity =	198.84	mm/hr		C =	0.771
Runoff =	99.5	l/s	-		

100-Year Pre-Development Peak Flow

Rational Method			Rain	fall Intensity
Area =	0.20	ha	Co	oefficients
"C" =	0.90		Yo	rk Region
Tc =	7.00	min	100	Year Storm
AC =	0.180		a =	1334
2.78*AC =	0.500		b =	2.00
Rainfall Intensity =	245.15	mm/hr	C =	0.771
Runoff =	122.7	l/s		

URS Canada Inc Spadina Subway Ext. SWM

	Finch Parking	Post Dev	elopment	
2-Yea	ar Pre-Development Pe	ak Flow		
	Rational M	lethod		Rainfa
	Area =	2.30	ha	Co
	"C" =	0.90		Yor
	Tc =	7.00	min	2 Ye
	AC =	2.070		a =
	2.78*AC =	5.755		b =
	Rainfall Intensity =	99.14	mm/hr	C =

Runoff = 570.5 l/s

5-Year Pre-Development Peak Flow

rea	rear Pre-Development Peak Flow							
	Rational M		Rainf	ia				
	Area =	2.30	ha		Co	e		
	"C" =	0.90			Yo	rŀ		
	Tc =	7.00	min		5 Y	е		
	AC =	2.070			a =			
	2.78*AC =	5.755			b =			
	Rainfall Intensity =	139.84	mm/hr		C =			
				•		_		

Runoff = 804.7 l/s

25-Year Pre-Development Peak Flow

Rational Method				Rainf	6
Area =	2.30	ha	1	Co	e
"C" =	0.90			Yor	rl
Tc =	7.00	min		25 Y	'(
AC =	2.070			a =	
2.78*AC =	5.755			b =	
Rainfall Intensity =	198.84	mm/hr		C =	
					-

Runoff = 1144.3 I/s

100-Year Pre-Development Peak Flow							
	Rational Method						
	Area =	2.30	ha				
	"C" =	0.90					
	Tc =	7.00	min				
	AC =	2.070					
	2.78*AC =	5.755					
	Rainfall Intensity =	245.15	mm/hr				

Runoff = 1410.7 l/s

all Intensity					
efficients					
rk Region					
ear Storm					
652.8					
4.00					
0.786					

all Intensity					
efficients					
k Region					
ear Storm					
840.7					
3.00					
0.779					

all Intensity
efficients
k Region
'ear Storm
1082
2.00
0.771

Finch PPUDO

Post Development

5-Year Pre-Development Peak Flow

Rational M	lethod			Rain	fall Intensity
Area =	0.30	ha		Co	oefficients
"C" =	0.90			Yo	rk Region
Tc =	7.00	min		5 Y	ear Storm
AC =	0.270			a =	840.7
2.78*AC =	0.751			b =	3.00
Rainfall Intensity =	139.84	mm/hr		C =	0.779
Runoff =	105.0	l/s	_		

25-Year Pre-Development Peak Flow

Rational Method				Rainfall Intensity		
Area =	0.30	ha		Co	efficients	
"C" =	0.90			Yor	k Region	
Tc =	7.00	min		25 Y	'ear Storm	
AC =	0.270			a =	1082	
2.78*AC =	0.751			b =	2.00	
Rainfall Intensity =	198.84	mm/hr		C =	0.771	
Runoff =	149.3	l/s	-	-		

100-Year Pre-Development Peak Flow

Rational M	Rational Method			Rainfall Intensity		
Area =	0.30	ha		Coefficients		
"C" =	0.90			York Region		
Tc =	7.00	min		100	Year Storm	
AC =	0.270			a =	1334	
2.78*AC =	0.751			b =	2.00	
Rainfall Intensity =	245.15	mm/hr		C =	0.771	
Runoff =	184.0	l/s				

URS Canada Inc Spadina Subway Ext. SWM

Finch Bus Terminal Post Development

2-Year Pre-Development Peak Flow

Rational Method			Rainfall Intensity		
Area =	1.20	ha	Co	efficients	
"C" =	0.90		York Region		
Tc =	7.00	min	2 Y	ear Storm	
AC =	1.080		a =	652.8	
2.78*AC =	3.002		b =	4.00	
Rainfall Intensity =	99.14	mm/hr	C =	0.786	
Runoff =	297.7	l/s			

5-Year Pre-Development Peak Flow

Rational Method					
Area =	1.20	ha			
"C" =	0.90				
Tc =	7.00	min			
AC =	1.080				
2.78*AC =	3.002				
Rainfall Intensity =	139.84	mm/hr			
-					

Runoff = 419.9 I/s

25-Year Pre-Development Peak Flow

	Rational Method				Rainf	all Intensity		
	Area =	1.20	ha		Co	efficients		
	"C" =	0.90			Yor	k Region		
	Tc =	7.00	min		25 Y	ear Storm		
	AC =	1.080			a =	1082		
	2.78*AC =	3.002			b =	2.00		
	Rainfall Intensity =	198.84	mm/hr		C =	0.771		
	Runoff =	597.0	l/s					

100-Year Pre-Development Peak Flow

Rational M		Rainfa					
Area =	1.20	ha	1	Co			
"C" =	0.90			Yor			
Tc =	7.00	min		100 ነ			
AC =	1.080			a =			
2.78*AC =	3.002			b =			
Rainfall Intensity =	245.15	mm/hr		C =			
			-				

Runoff = 736.0 l/s

Raint	fall Intensity
Co	efficients
Yo	rk Region
5 Y	ear Storm
a =	840.7
b =	3.00
C =	0.779

all Intensity efficients
k Region Year Storm
1334
2.00
0.771

York University

Post Development

2-Year Pre-Development Peak Flow						
	Rational Method			Rainf	all Intensity	
	Area =	0.10	ha		Coefficients	
	"C" =	0.90			York Region	
	Tc =	7.00	min		2 Year Storm	
	AC =	0.090			a =	652.8
	2.78*AC =	0.250			b =	4.00
	Rainfall Intensity =	99.14	mm/hr		C =	0.786
					_	
	Runoff =	24.8	l/s			

5-Year Pre-Development Peak Flow

Rational Method				Raint	all Intensity
Area =	0.10	ha	1	Co	efficients
"C" =	0.90			York Region	
Tc =	7.00	min		5 Year Storm	
AC =	0.090			a =	840.7
2.78*AC =	0.250			b =	3.00
Rainfall Intensity =	139.84	mm/hr		C =	0.779
Runoff =	35.0	l/s	-		

25-Year Pre-Development Peak Flow

Rational Method				Rain	fall Intensity
Area =	0.10	ha		Coefficients	
"C" =	0.90			York Region	
Tc =	7.00	min		25 Year Storm	
AC =	0.090		1	a =	1082
2.78*AC =	0.250			b =	2.00
Rainfall Intensity =	198.84	mm/hr		C =	0.771
Runoff =	49.8	l/s	-		

100-Year Pre-Development Peak Flow

Rational Method				Rain	fall Intensity
Area =	0.10	ha		Co	oefficients
"C" =	0.90			Yo	rk Region
Tc =	7.00	min		100	Year Storm
AC =	0.090			a =	1334
2.78*AC =	0.250			b =	2.00
Rainfall Intensity =	245.15	mm/hr		C =	0.771
			-		
Runoff =	61.3	l/s			

URS Canada Inc Spadina Subway Ext. SWM

Steeles East Parking Post Development

2-Year Pre-Development Peak Flow

 Rational M	lethod		Raint	fall Intensity
Area =	5.20	ha	Co	efficients
"C" =	0.90		York Region	
Tc =	7.00	min	2 Year Storm	
AC =	4.680		a =	652.8
2.78*AC =	13.010		b =	4.00
Rainfall Intensity =	99.14	mm/hr	C =	0.786
Runoff =	1289.8	l/s	 	

5-Year Pre-Development Peak Flow

Rational Method				Rainf	а
Area =	5.20	ha		Co	e
"C" =	0.90			Yo	rk
Tc =	7.00	min		5 Y	e
AC =	4.680		1	a =	
2.78*AC =	13.010			b =	
Rainfall Intensity =	139.84	mm/hr		C =	
			-	-	
Runoff =	1819.4	l/s			

25-Year Pre-Development Peak Flow

Rational Method				Raint	fall Intensity
Area =	5.20	ha		Coefficients	
"C" =	0.90			York Region	
Tc =	7.00	min		25 Year Storm	
AC =	4.680			a =	1082
2.78*AC =	13.010			b =	2.00
Rainfall Intensity =	198.84	mm/hr		C =	0.771
			-		
Runoff =	2587.0	l/s			

100-Year Pre-Development Peak Flow

 ear i le Betelepinene				
Rational Method			Rainf	2
Area =	5.20	ha	Co	e
"C" =	0.90		Yor	ĺ
Tc =	7.00	min	100 `	ť
AC =	4.680		a =	
2.78*AC =	13.010		b =	
Rainfall Intensity =	245.15	mm/hr	C =	
				-

Runoff = 3189.5 l/s

all Intensity					
efficients					
k Region					
ear Storm					
840.7					
3.00					
0.779					

all Intensity
efficients
k Region
Year Storm
1334
2.00
0.771

Steeles West Parking Post Development

2-Year Pre-Development Peak Flow

Rational M	Nethod			Rain	fall Intensity
Area =	4.90	ha	1	Co	oefficients
"C" =	0.90			Yo	rk Region
Tc =	7.00	min		2 Y	ear Storm
AC =	4.410			a =	652.8
2.78*AC =	12.260			b =	4.00
Rainfall Intensity =	99.14	mm/hr		C =	0.786
			-		
Runoff =	1215.4	l/s			

5-Year Pre-Development Peak Flow

Rational M	lethod		Rain	all Intensity
Area =	4.90	ha	Co	efficients
"C" =	0.90		Yo	rk Region
Tc =	7.00	min	5 Y	ear Storm
AC =	4.410		a =	840.7
2.78*AC =	12.260		b =	3.00
Rainfall Intensity =	139.84	mm/hr	C =	0.779

Runoff = 1714.4 I/s

25-Year Pre-Development Peak Flow

Rational M	/lethod			Rainf	all Intensity
Area =	4.90	ha		Co	efficients
"C" =	0.90			Yo	rk Region
Tc =	7.00	min		25 Y	ear Storm
AC =	4.410			a =	1082
2.78*AC =	12.260			b =	2.00
Rainfall Intensity =	198.84	mm/hr		C =	0.771
Runoff =	2437.8	l/s	-		

100-Year Pre-Development Peak Flow

Rational M	lethod		Rainfall Intensity		fall Intensity
Area =	4.90	ha		Co	pefficients
"C" =	0.90			Yo	rk Region
Tc =	7.00	min		100	Year Storm
AC =	4.410			a =	1334
2.78*AC =	12.260			b =	2.00
Rainfall Intensity =	245.15	mm/hr		C =	0.771
Runoff =	3005.5	l/s	-	-	

URS Canada Inc Spadina Subway Ext. SWM

Steeles Bus Terminal Post Development

2-Year Pre-Development Peak Flow

Rational M	lethod	
Area =	2.10	ha
"C" =	0.90	
Tc =	7.00	min
AC =	1.890	
2.78*AC =	5.254	
Rainfall Intensity =	99.14	mm/hr
Runoff =	520.9	l/s

5-Year Pre-Development Peak Flow

Rational N	lethod		Ra
Area =	2.10	ha	(
"C" =	0.90		Ì
Tc =	7.00	min	5
AC =	1.890		а
2.78*AC =	5.254		b
Rainfall Intensity =	139.84	mm/hr	С
Runoff –	734 8	l/e	

ainfa Coe Yorl 5 Ye a = b = c =

Runoff = 734.8 l/s

25-Year Pre-Development Peak Flow

5-Y E	ear Pre-Development P	eak Flow				
	Rational M	lethod			Rainf	2
	Area =	2.10	ha		Co	e
	"C" =	0.90			Yor	Ī
	Tc =	7.00	min		25 Y	1
	AC =	1.890		1	a =	
	2.78*AC =	5.254			b =	
	Rainfall Intensity =	198.84	mm/hr		C =	
				_		
	_ "					

Runoff = 1044.8 l/s

100-Year Pre-Development Peak Flow

Rational N	lethod		Rainf	2
Area =	2.10	ha	Co	e
"C" =	0.90		Yo	rl
Tc =	7.00	min	100`	Y
AC =	1.890		a =	
2.78*AC =	5.254		b =	
Rainfall Intensity =	245.15	mm/hr	C =	
			-	-

Runoff = 1288.1 I/s

7 of 8

Raint	fall Intensity
Co	efficients
Yo	rk Region
2 Y	ear Storm
a =	652.8
b =	4.00
C =	0.786

all Intensity
efficients
rk Region
ear Storm
840.7
3.00
0.779

all Intensity
efficients
rk Region
'ear Storm
1082
2.00
0.771

all Intensity		
rk Region		
Year Storm		
1334		
2.00		
0.771		

APPENDIX C MODIFIED RATIONAL METHOD STORAGE CALCULATIONS

		5	Modi	fied Ration	nal Method		
	Pro	ject Name :	Spadian EA]
	574 S	1	Sheppard W	est Station B	uilding	2	4
	F	Project No. :	33015347				
		Area =	0.2	ha			
		"C" =	0.9				
		AC=	0.18				
		Tc =	7.0	min			
	Time	Increment =	5.0	min			-
	Re	lease Rate =	8.4	1/s	North York	2yr	
	Ma	x.Storage =	22	m3	a=	652.8	
		_		- 	b=	4.00	
					c=	0.786	
							51
	Time	Rainfall	Storm	Runoff	Released	Storage	
		Intensity	Runoff	Volume	Volume	Volume	
	(min)	(mm/hr)	(l/s)	(m3)	(m3)	(m3)	
	7.0	99.1	49.61	20.8	3.5	17.3	
	12.0	73.8	36.95	26.6	6.0	20.6	
	17.0	59.6	29.84	30.4	8.6	21.9	
	22.0	50.4	25.23	33,3	11.1	22.2	<<<<
	27.0	43.9	21.97	35.6	13.6	22.0	
	32.0	39.0	19.54	37.5	16.1	21.4	
	37.0	25.0	17.64	30.2	19.6	20.5	
	57.0	32.2	17.04	,19.2	18.0	20.5	
	42.0	32.2	16.11	40.6	21.2	19.4	
	47.0	29.7	14.86	41.9	23.7	18.2	
	52.0	27.6	13.80	43.1	26.2	16.9	
	57.0	25.8	12.91	44.1	28.7	15.4	
	62.0	24.2	12.13	45.1	31.2	13.9	
	67.0	22.9	11.46	46.1	33.8	12.3	
	72.0	21.7	10.86	46.9	36.3	10.6	
	77.0	20.6	10.33	47.7	38.8	8.9	
	82.0	19.7	9.85	48.5	41.3	1.2	
	07.U 92.0	10.0	9.43	49.2	45.8	2.5	
8. ₁₁₂	97.0	17.4	8.68	50.5	48.9	17	8
12	102.0	16.7	8,36	51.2	51.4	-0.2	
	107.0	16.1	8.06	51.8	53.9	-2.2	
	112.0	15.6	7.79	52.3	56.4	-4.1	
	117.0	15.1	7.53	52.9	59.0	-6.1	
	122.0	14.6	7 20	52 4	615	0.1	1

	F		Modi	fied Ratio	nal Method		
	Pr	oject Name :	Spadian EA]
			Sheppard W	est Station I	Building		1
		Project No: :	33015347				1
							÷
		Area =	0.2	ha			
		"C" =	0.9				
		AC=	0.18				
		Tc =	7.0	min	10		
	Time	Increment =	5.0	min			
	Re	lease Rate =	8.4	l/s	North York	5vr	1
	M	ax.Storage =	35	m3	a=	840.7	
		0	1	1		3.00	
					c=	0.779	
					-	0.1.75	IJ
	Time	Rainfall	Storm	Runoff	Released	Storage]
		Intensity	Runoff	Volume	Volume	Volume	
	(min)	(mm/hr)	(1/s)	(m3)	(m3)	(m2)	
	7.0	139.8	69.98	29.4	3.5	25.9	
	12.0	102.0	51.03	36.7	60	30.7	
	17.0	81.5	40.78	41.6	8.6	33.0	
	22.0	68.5	34.27	45.2	11.1	34.2	
	27.0	59.4	29.74	48.2	13.6	34.6	
	32.0	52.7	26.37	50.6	16.1	34.5	
	37.0	47.5	23.77	52.8	18.6	34.1	
	42.0	43.3	21.68	54.6	21.2	33.5	
	47.0	39.9	19.97	56.3	23.7	32.6	
3	52.0	37.1	18.54	57.9	26.2	31.7	
	57.0	34.6	17.33	59.3	28.7	30.5	
	62.0	32.5	16.28	60.6	31,2	29.3	
	67.0	30.7	15.37	61.8	33.8	28.0	
	72.0	29.1	14.56	62.9	36.3	26.6	
	77.0	27.7	13.85	64.0	38.8	25.2	- 11
	82.0	26.4	· 13.21	65.0	41.3	23.7	
	87.0	25.3	12.64	66.0	43.8	22.1	
	92.0	24.2	12.11	66.9	46.4	20.5	
	97.0	23.3	11.64	67.7	48.9	18.9	
	102.0	22.4	11.21	68.6	51.4	17.2	
	107.0	21.6	10.81	69.4	53.9	15.5	
	112.0	20.9	10.44	70.2	56.4	13.7	
	117.0	20.2	10.10	70.9	59.0	11.9	
	122.0	19.6	9.78	71.6	61.5	10.1	

		Modi	fied Ratio	nal Method		
Pro	oject Name :	Spadian EA				
		Sheppard W	est Station I	Building]
]	Project No. :	33015347				
	Area =	0.2	lha			
	"C" =	0.9				
	AC=	0.18				
à	Tc =	7.0	min			
Time	Increment =	5.0	min			
Re	lease Rate =	8.4	L/s	North York	25vr	1
Ma	ax.Storage =	53	m3	a=	1082	
	U		1	h=	2.00	
				c=	0.771	1
				222 	L	과
Time	Rainfall	Storm	Runoff	Released	Storage	
	Intensity	Runoff	Volume	Volume	Volume	
(min)	(mm/hr)	(l/s)	(m3)	(m3)	(m3)	
7.0	198.8	99.50	41.8	3.5	38.3	
12.0	141.4	70.77	51.0	6.0	44.9	
17.0	111.8	55.93	57.0	8.6	48.5	
22.0	93.3	46.71	61.7	11.1	50.6	
27.0	80.7	40.37	65.4	13.6	51.8	
32.0	71.4	35.71	68.6	16.1	52.4	
37.0	64.2	32.12	71.3	18.6	52,7	<<<<
42.0	58.5	29.27	73.8	21.2	52.6	
47.0	53.8	26.94	76.0	23.7	52.3	
52.0	50.0	25.00	78.0	26.2	51.8	
57.0	46.7	23.35	79.8	28.7	51.1	
62.0	43.8	21.93	81.6	31,2	50.3	
67.0	41.3	20.69	83.2	33.8	49.4	
72.0	39.2	19.61	84.7	36.3	48.4	
77.0	37.3	18.64	86.1	38.8	47.3	
82.0	35.5	17.78	87.5	41.3	46.1	
87.0	34.0	17.00	88.8	43.8	44.9	
92.0	32.6	16.30	90.0	46.4	43.6	
97.0	31.3	15.66	91.2	48.9	42.3	
102.0	30.1	15.08	92.3	51.4	40.9	
107.0	29.1	14.54	93.4	53.9	39.4	
112.0	28.1	14.05	94.4	56.4	38.0	
	21.2	15.39	95.4	59.0	36.5	

_		IVIOD	med Ratio	onal Method	
Pr	oject Name :	Spadian EA	1		
	D ' / NT	Sheppard V	Vest Station	Building	
	Project No. :	33015347			54772V
	Area =	0.2	lha		
	"C" =	0.9	-		
	AC=	0.18			
	Tc =	7.0	min		
Time	Increment =	5.0	min		
Re	elease Rate =	8.4	l/s	North York	100vr
М	ax.Storage =	70	m3	a=	1334
	- 1		4J	b=	2.00
				c=	0.771
				· · · ·	
Time	Rainfall	Storm	Runoff	Released	Storage
	Intensity	Runoff	Volume	Volume	Volume
(min)	(mm/hr)	(l/s)	(m3)	(m3)	(m3)
7.0	245.2	122.67	51.5	3.5	48.0
12.0	174.4	87.26	62.8	6.0	56.8
17.0	137.8	68.95	70.3	8.6	61.8
22.0	115.1	57.59	76.0		64.9
27.0	99.5	49 77	80.6	13.6	67.0
32.0	88.0	44.03	84.5	16.1	68.4
37.0	79.1	39.61	87.9	18.6	69.3
42.0	72.1	36.09	90.9	21.2	69.8
47.0	66.4	33.21	93.7	23.7	70.0
52.0	61.6	30.82	96.2	26.2	69.9
57.0	57.5	28.78	98.4	28.7	69.7
62.0	54.0	27.03	100.6	31.2	69.3
67.0	51.0	25.51	102.6	33.8	68.8
72.0	48.3	24.17	104.4	36.3	68.1
77.0	45.9	22.98	106.2	38.8	67.4
82.0	43.8	21.92	107.8	41.3	66.5
87.0	41.9	20.96	109.4	43.8	65.6
92.0	40.2	20.10	111.0	46.4	64.6
97.0	38.6	19.31	112.4	48.9	63.5
102.0	37,2	18.59	113.8	51.4	62.4
107.0	35.8	17.93	115.1	53.9	61.2
112.0	34.6	17.32	116.4	56.4	60.0
117.0	33.5	16.76	117.6	59.0	58.7

		Modi	fied Ratio	nal Method		
Pr	oject Name :	Spadian EA	2			1
		Finch West	Parking Lot]
ļ	Project No. :	33015347	5.4 5			
			7			
	Area =	2.3	ha			
	"C" =	0.9				
	AC=	2.07				
	Tc =	7.0	min			
Time	Increment =	10.0	min	(a
Re	lease Rate =	16.4	1/s	North York	2yr	
Ma	ax.Storage =	498	m3	a=	652.8	
				b=	4.00	
				c=	0.786	
			r			ก
Time	Rainfall	Storm	Runoff	Released	Storage	
	Intensity	Runoff	Volume	Volume	Volume	
(min)	(mm/hr)	(l/s)	(m3)	(m3)	(m3)	
7.0	99,1	570.51	239.6	6.9	232.7	
17.0	59.6	343.19	350.1	16.7	333.3	
27.0	43.9	252.69	409.4	26.6	382.8	
37.0	35.2	202.84	450.3	36.4	413.9	
47.0	29.7	170.86	481.8	46.2	435.6	
57.0	25.8	148.43	507.6	56.1	451.5	
67.0	22.9	131.74	529.6	65.9	463.7	
77.0	20.6	110 70	540 7	75.0	472.0	
77.0	20.0	110.70	346.7	73.8	473.0	
87.0	18.8	108.39	505.8	85.0	480.2	
97.0	17.4	99.86	581.2	95.4	485.7	
107.0	16.1	92.72	595.3	105.3	490.0	
117.0	15.1	86.64	608.2	115.1	493.1	
127.0	14.1	81.40	620.3	125.0	495.3	
137.0	13.4	70.83	631.5	134.8	496.7	
147.0	12.7	12.80 69.22	652.1	144.0	497.4 107.4	
167.0	11.0	66.02	661.5	164.3	497.0	
177.0	11.0	63.13	670.5	174.2	496 3	
187.0	10.5	60.52	679.0	184.0	495.0	
197.0	10.1	58.14	687.2	193.8	493.4	
207.0	9.7	55.96	695.1	203.7	491.4	
217.0	9.4	53.96	702.6	213.5	489.1	
227.0	9.1	52.12	709.9	223.4	486.5	
237.0	8.8	50.41	716.9	233.2	483.6	

_		Modi	ned Ratic	nai Method		
Pr	oject Name :	Spadian EA	L			1
8		Finch West	Parking Lot			
	Project No. :	33015347]
	Area =	2.3	ha			
	"C" =	0.9				
	AC=	2.07				
	Tc =	7.0	lmin			
Time	Increment =	10.0	min			
Re	lease Rate =	36.7	1/s	North York	25vr	٦
M	ax.Storage =	840	m3	a=	1082	1
	5 1	2	Ŧ.	h=	2.00	
				c=	0.771	╢
						1
Time	Rainfall	Storm	Runoff	Released	Storage	1
	Intensity	Runoff	Volume	Volume	Volume	
(min)	(mm/hr)	(l/s)	(m3)	(m3)	(m3)	
7.0	198.8	1144.25	480.6	15.4	465.2	
17.0	111.8	643.17	656.0	37.4	618.6	ł
27.0	80.7	464.23	752.1	59.5	692.6	
37.0	64.2	369.43	820.1	81.5	738.7	
47.0	53.8	309.81	873.7	103.5	770.2	
57.0	46.7	268.48	918.2	125.5	792.7	
67.0	41.3	237.95	956.6	147.5	809.0	
77.0	37.3	214.37	990.4	169.6	820.9	
87.0	34,0	195.55	1020.8	191.6	829.2	
97.0	31.3	180.14	1048.4	213.6	834.8	
107.0	29.1	167.26	1073.8	235.6	838.2	
117.0	27.2	156.31	1097.3	257.6	839,7	
127.0	25.5	146.89	1119.3	279.7	839.6	
137.0	24.1	138.67	1139.9	301.7	838.2	
147.0	22.8	131.44	1159.3	323.7	835.6	
157.0	21.7	125.02	1177.6	345.7	831.9	
167.0	20.7	119.27	1195.1	367.7	827.4	
177.0	19.8	114.10	1211.8	389.8	822.0	
187.0	19.0	109.42	1227.7	411.8	815.9	
197.0	18.3	105.15	1242.9	433.8	809.1	
207.0	17.6	101.25	1257.6	455.8	801.8	
217.0	17.0	97.67	1271.7	477.8	793.8	
227.0	16.4	94.36	1285.2	499.9	785.4	
237.0	15.9	91.31	1298.4	521.9	776.5	

		Modi	ied Ratio	nal Method		
Pro	ject Name :	Spadian EA		*****		
		Finch West	Parking Lot			
F	Project No. :	33015347				
	Area =	2.3	ha			
	"C" =	0.9				
	AC=	2.07				
T	1c =	7.0	min			
Time	Increment =	10.0	11111 17.	NT	100	1
Re.	lease Rate =	48.5	1/S	North York	TUOyr	
Ma	ax.Storage =	1013	m3	a=	1334	
				b≕	2.00	
				c=	0.771	
Time	Rainfall	Storm	Runoff	Released	Storage	l
	Intensity	Runoff	Volume	Volume	Volume	
(min)	(mm/hr)	(l/s)	(m3)	(m3)	(m3)	
7.0	245.2	1410.75	592.5	20.4	572.1	
17.0	137.8	792.96	808.8	49.5	759.4	
27.0	99.5	572.35	927.2	78.6	848.6	
37.0	79.1	455.47	1011.1	107.7	903.5	
47.0	66.4	381.97	1077.2	136.8	940.4	
57.0	57.5	331.01	1132,1	165.9	966.2	
67.0	51.0	293.37	1179.4	195.0	984.4	
77.0	45.9	264.30	1221.1	224.1	997.0	
87.0	41.9	241.10	1258.5	253.2	1005.4	
97.0	38.6	222.09	1292.6	282.3	1010.3	
107.0	35.0	206 21	1373.0	311 4	1012.5	1
1170	33 5	102 72	1323.3	340.5	1012.5	
127.0	31.5	181.09	1379.9	369.6	1010.4	
137.0	29.7	170.96	1405.3	398.7	1006.7	
147.0	28.2	162.05	1429.3	427.8	1001.5	
157.0	26.8	154.13	1451.9	456.9	995.1	
167.0	25.6	147.05	1473.5	486.0	987.5	
177.0	24.4	140.68	1494.0	515.1	978.9	
187.0	23.4	134.90	1513.6	544.2	969.4	
197.0	22.5	129.64	1532.4	573.3	959.1	
207.0	21.7	124.84	1550.5	602.4	948.1	
217.0	20.9	120.42	1567.8	631.5	936.4	
227.0	20.2	116.34	1584.6	660.6	924.0	

D.	cient Nome	Castin DA	ultu Kath	Juai Methou	
Pr	oject ivame :	Spadian EA	n	<u>` 1 1 00</u>	
	Project No	33015347	Passenger p	ack-up drop-off	
1	110jeet 140	155015547			
	Area =	0.3	lha		
	"C" =	0.9			
	AC=	0.27			
	Tc =	7.0	min		
Time	Increment =	10.0	min		
Re	lease Rate =	2.6	1/s	North York	2.vr
M	ax.Storage =	61	lm3	a=	652.8
	U	1	<u>1</u>	h-	4.00
				6= 6=	0.786
Time	Rainfall	Storm	Runoff	Released	Storage
	Intensity	Runoff	Volume	Volume	Volume
(min)	(mm/hr)	(l/s)	(m3)	(m3)	(m3)
7.0	99.1	74.41	31.3	1.1	30.2
17.0	59.6	44,76	45.7	2.7	43.0
27.0	43.9	32.96	53.4	4.2	49.2
37.0	35.2	26.46	58.7	5.9	52.0
47.0	20.7	20,40	50.7	3.8	55.0
57.0	29.7	10.26	02.8	7.3	55.5
67.0	23.6	19.30	66.2	8.9	57.3
07.0	22.9	17.18	69.1	10.5	58.6
77.0	20.6	15.49	71.6	12.0	59.6
87.0	18.8	14.14	73.8	13.6	60.2
97.0	17.4	13.03	75.8	15.1	60.7
107.0	16.1	12.09	77.6	16.7	61.0
117.0	15.1	11.30	79.3	18.3	61.1
127.0	14.1	10.62	80.9	19.8	61.1
137.0	13.4	10.02	82.4	21.4	61.0
147.0	12.7	9.50	83.7	22.9	60.8
157.0	12.0	9.03	85.1	24.5	60.6
107.0	11.5	8.61	86.3	26.1	60.2
1/7.0	11.0	8.23	87.5	27.6	59.8
107.0	10.5	7.89	88.6	29.2	59.4
207.0	07	7.38	89.6	30.7	58.9
217.0	9.4	7.50	90.7	32.3	57.0
227.0	9,1	6.80	92.6	35.4	57.5
237.0	00	6.50	02.5	27.0	51.4

		nal Method	ied Ratio	Modif		
				Spadian EA	ject Name :	Pro
		ck-up drop-off	Passenger pi	Finch West-		
				33015347	roject No. :	P
				0.0		
			na	0.5	Area =	
				0.9	-C =	
			l	0.27	AC=	
			min min	10.0	IC =	Time
٦	5	North Vork		2.0	ancientent -	Del
4	Jyi			- 3,0 - 90	ease Rate =	Kei
	840.7	a=	mo	80	ix.Storage =	Ma
	3:00	D=				
	0.779	c=				
٦	Storage	Released	Runoff	Storm	Rainfall	Time
	Volume	Volume	Volume	Runoff	Intensity	
	(m3)	(m3)	(m3)	(l/s)	(mm/hr)	(min)
	42.5	1.6	44,1	104.97	139.8	7.0
	58.5	3.9	62.4	61.17	81.5	17.0
	66.1	6.2	72.3	44.60	59.4	27.0
	70.7	8.4	79.1	35.65	47.5	37.0
	73.8	10.7	84.5	29.96	39.9	47.0
	75.9	13.0	88.9	25,99	34.6	57.0
	77.4	15.3	92.7	23.05	30.7	67.0
	78.4	17.6	96.0	20.78	27.7	77.0
	79,1	19.8	98.9	18.95	25.3	87.0
	79.5	22.1	101.6	17,46	23.3	97.0
<<<	79.7	24.4	104.1	16.21	21.6	107.0
	79.7	26.7	106.3	15.15	20.2	117.0
	79.5	29.0	108.5	14.23	19.0	127.0
	79.2	31.2	110.4	13.43	17.9	137.0
	78.8	33.5	112.3	12.73	17.0	147.0
	78.3	35.8	114.0	12.11	16.1	157.0
	77.6	38.1	115.7	11.55	15.4	167.0
	76.9	40.4	117.3	11.05	14.7	177.0
	76.2	42.6	118.8	10.59	14.1	187.0
	75.4	44.9	120.3	10.18	13.6	197.0
8	74.5	47.2	121.7	9.80	13.1	207.0
	73.5	49.5	123.0	9.45	12.6	217.0
	72.5	51.8	124.3	9.13	12.2	227.0

		nal Method	fied Ratio	Modi		
]				Spadian EA	oject Name :	Pro
]		ck-up drop-off	Passenger pi	Finch West		
]				33015347	Project No. :]
			ha	0.3	Area =	
				0.9	"C" =	
				0.27	AC=	
			min	7.0	Tc =	
			min	10.0	Increment =	Time
1	25yr	North York	1/s	5.8	lease Rate =	Re
İ	1082	a=	m3	103	ax.Storage =	M
	2.00	b=	2	5 5	L	
]	0.771	c=				
1	Storoza	Released	Runoff	Storm	Rainfall	Time
	Storage	Reitaseu	Runon	Broth	Namiai	Thic
	Volume	Volume	Volume	Runoff	Intensity	
1	(m3)	(m3)	(m3)	(l/s)	(mm/hr)	(min)
	60.2	2.4	62.7	149.25	198.8	7.0
	79.7	5.9	85.6	83.89	111.8	17.0
	88.7	9.4	98.1	60.55	80.7	27.0
	94.1	12.9	107.0	48.19	64.2	37.0
	97.6	16.4	114.0	40.41	53.8	47.0
	99.9	19.8	119.8	35.02	46.7	57.0
	101.5	23.3	124.8	31.04	41.3	67.0
	102.4	26.8	129.2	27.96	37.3	77.0
	102.9	30.3	133.1	25.51	34.0	87.0
<	103.0	33.8	136.7	23.50	31.3	97.0
	102.8	37.2	140.1	21.82	29.1	107.0
	102.4	40.7	143.1	20.39	27.2	117.0
	101.8	44.2	146.0	19.16	25.5	127.0
	101.0	47.7	148.7	18.09	24.1	137.0
	100.1	51.2	151.2	17.14	22.8	147.0
	99.0	54.6	153.6	16.31	21.7	157.0
	97.8	58.1	155.9	15.56	20.7	167.0
	96.5	61.6	158,1	14.88	19.8	177.0
	95.1	65.1	160.1	14.27	19.0	187.0
	93.6	68.6	162.1	13.72	18.3	197.0
	92.0	72.0	164.0	13.21	17.6	207.0
	90.4	75.5	165.9	12.74	17.0	217.0
	88.6	/9.0	107.0	12.31	10.4	227.0

		Modi	fied Ratio	nal Method		
Pr	oject Name :	Spadian EA				
		Finch West	Bus Termin	al / Roads / Sta	tion Building	
	Project No. :	33015347				
			ח.			
	Area =	1.2	ha			
	"C" =	0.9				
	AC=	1.08				
Time e	Tc =	7.0	min			
Time D-	Increment =	10.0	min			1
Re	lease Kate =	9.1	1/S	North York	2yr	
M	ax.Storage =	255	m3	a	= 652.8	
				b	= 4.00	
				C	=0.786	I
Time	D-i-C-II		D 62	<u> </u>	T	1
THIE	Kainiali	Storm	Runoff	Released	Storage	
	Intensity	Runoff	Volume	Volume	Volume	
(min)	(mm/hr)	(l/s)	(m3)	(m3)	(m3)	
7.0	99.1	297.66	125.0	3.8	121.2	
17.0	59.6	179.05	182.6	9.3	173.4	
27.0	43.9	131.84	213.6	14.7	198.8	
37.0	35.2	105.83	234.9	20.2	214.7	
47.0	29.7	89.15	251.4	25.7	_ 225.7	
57.0	25.8	77.44	264.9	31.1	233.7	
67.0	22.9	68.73	276.3	36.6	239.7	
77.0	20.6	61.97	286.3	42.0	244,3	
87.0	18.8	56.55	295.2	47.5	247.7	ĺ
97.0	17.4	52.10	303.2	53.0	250,3	
107.0	16.1	48.38	310.6	58.4	252.1	
117.0	15.1	45.20	317.3	63.9	253.5	
127.0	14.1	42.47	323.6	69.3	254.3	
137.0	13.4	40.08	329.5	74.8	254.7	
147.0	12,7	37.98	335.0	80.3	254.7	<
157.0	12.0	36.11	340.2	85.7	254.5	
167.0	11.5	34.44	345.1	91.2	253.9	
177.0	11.0	32.94	349.8	96.6	253.2	
187.0	10.5	31.58	354.3	102.1	252.2	
197.0	10.1	30.33	358.6	107.6	251.0	
207.0	9.7	29.20	362.6	113.0	249.6	
217.0	9.4	28.16	366.6	118.5	248.1	
441.0	7.1	27.19	370.4	123.9	246.4	

		Modi	fied Ratio	nal Method		
Pro	oject Name :	Spadian EA]
		Finch West	Bus Termina	al / Roads / Stati	on Building]
]	Project No. :	33015347]
			7			
	Area =	1.2	ha			
	"C" =	0.9				
	AC=	1.08				
	Tc =	7.0	min			
Time	Increment =	10.0	min	P		5
Re	lease Rate =	13.5	l/s	North York	5yr	
Ma	ax.Storage =	331	m3	a=	840.7	
				b=	3.00	
				c=	0.779	
		r		·	P	ล
Time	Rainfall	Storm	Runoff	Released	Storage	
	Intensity	Runoff	Volume	Volume	Volume	
(min)	(mm/hr)	(1/s)	(m3)	(m3)	(m3)	
7.0	139.8	419.86	176.3	5.7	170.7	
17.0	81.5	244.68	249.6	13.8	235.8	
27.0	59.4	178.42	289.0	21.9	267.2	
37.0	47.5	142.60	316.6	30.0	286.6	
47.0	39.9	119.84	338.0	38.1	299.9	
57.0	34.6	103.98	355.6	46.2	309.4	
67.0	30.7	92,21	370.7	54.3	316.4	
77.0	27.7	83.10	383.0	62.4	321.6	
87.0	25.2	75.01	205.9	70.5	321.0	
07.0	22,3	75.01	393.0	70.3	325.3	
107.0	23.3	09.84	400.3	/8.0	327.9	
107.0	21.0	64.84	416.3	86.7	329.6	
127.0	20.2	60.59 56.02	425.4	94.8	330.6	
137.0	19.0	53 74	455.8	102.9	330.9	<<<
147.0	17.0	50.93	449.2	1191	330.0	
157.0	16.1	48.43	456.2	127.2	329.0	
167.0	15.4	46.19	462.9	135.3	327.6	
177.0	14.7	44.18	469.2	143.4	325.9	
187.0	14.1	42.36	475.3	151.5	323.8	
197.0	13.6	40.70	481.1	159.6	321.5	
207.0	13.1	39.18	486.7	-167.7	319.0	
217.0	12.6	37.79	492.0	175.8	316.2	
227.0	12.2	36.50	497.2	183.9	313.3	
237.0	11.8	35.31	502.1	192.0	310.2	

		Modi	fied Ratio	nal Method		
Pro	oject Name :	Spadian EA				
		Finch West	Bus Termina	al / Roads / Stati	on Building	
I	Project No. :	33015347				
	Area =	1.2	ha			
	"C" =	0.9				
	AC=	1.08				
	Tc =	7.0	min			
Time	Increment =	10.0	min			
Re	lease Rate =	20.5	l/s	North York	25yr]
Ma	x.Storage =	429	m3	a=	1082	
	U	1 <u></u>	1	h=	2.00	
				c=	0.771	
						1
Time	Rainfall	Storm	Runoff	Released	Storage	1
	Intensity	Runoff	Volume	Volume	Volume	
(min)	(mm/hr)	(1/s)	(m3)	(m3)	(m3)	
7.0	198.8	597.00	250.7	8.6	242.1	
17.0	111.8	335.57	342.3	20.9	321.4	
27.0	80.7	242.21	392.4	33.2	359.2	
37.0	64.2	192.75	427.9	45.5	382.4	
47.0	53.8	161.64	455.8	57.9	302.4	
57.0	46.7	140.08	479.1	70.1	409.0	
67.0	41.3	124.15	499.1	82.4	416.7	
77.0	37 3	111.85	5167	04.7	422.0	
87.0	34.0	102.03	522.6	107.0	422.0	
07.0	21.2	02.00	532.0	107.0	423.0	
97.0	31.3	93.99	547.0	119.3	427.7	
107.0	29.1	87.26	560.2	131.6	428.6	<<<<
117.0	27.2	81.55	572.5	143.9	428.6	
127.0	25.5	76.64	584.0	156.2	427.8	
137.0	24,1	72.35	594.7	168.5	426.2	
147.0	22.8	68.38	604.8	180.8	424.0	
167.0	21.7	60.00	014.4	193.1	421.3	
107.0	20.7	50.52	623.3	205.4	418.1	
197.0	19.8	57.00	640.5	21/./	414.5	
107.0	18.3	54.86	648.5	230.0	410.5	
207.0	17.5	57.82	656 1	242.3	400.2	
217.0	17.0	50.06	663.5	234.0	306.6	
227.0	16.4	49.23	670.6	200.9	301 /	
	A T	17.23	0.010	219.2	571.4	11

1999-140 - 1997 - 1998 -		Modi	fied Ratio	onal Method		
Pre	oject Name :	Spadian EA			x	1
		Finch West	Bus Termin	al / Roads / Stat	ion Building	1
]	Project No. :	33015347]
	Area =	1.2	ha			
	"C" =	0.9	, inc			
	AC=	1.08				
	Tc =	7.0	min			
Time	Increment =	10.0	min			
Re	lease Rate =	27.1	1/s	North York	100vr	1
M	ax.Storage =	517	m3	a=	1334	1
	0	L		h=	2.00	
				0= c=	0,771	
		2	-2247	-	L	บ
Time	Rainfall	Storm	Runoff	Released	Storage	
	Intensity	Runoff	Volume	Volume	Volume	
(min)	(mm/hr)	(1/s)	(m3)	(m3)	(m3)	
7.0	245.2	736.04	309.1	11.4	297.8	
17.0	137.8	413.72	422.0	27.6	394.4	
27.0	99.5	298.62	483.8	43.9	439.9	
37.0	79.1	237.64	527.6	60.2	467.4	
47.0	66.4	199.29	562.0	76.4	485.6	
57.0	57.5	172.70	590.6	92.7	498.0	
67.0	51.0	153.06	615.3	108.9	506.4	
77.0	45.9	137.90	637.1	125.2	511.9	
87.0	41.9	125.79	656.6	141.5	515.2	
97.0	38.6	115.87	674.4	157.7	516.7	
107.0	35.8	107.59	690.7	174.0	516.7	<<<-
117.0	33.5	100.55	705.9	190.2	515.6	
127.0	31.5	94.48	720.0	206,5	513.5	
137.0	29.7	89.20	733.2	222.8	510.5	
147.0	28.2	84.55	745.7	239.0	506.7	
157.0	26.8	80.42	757.5	255.3	502.2	
167.0	25.6	76.72	768.8	271.5	497.2	
177.0	24.4	73.40	779.5	287.8	491.7	
187.0	23.4	70.38	789.7	304.1	485.6	
197.0	22.5	67.64	799.5	320.3	479.2	
207.0	21.7	65.13	808.9	336.6	472.4	
227.0	20.9	60.70	818.0	352.8	465.2	
227.0	10.6	59.72	020.7	205.1	457.0	

Pr	oiect Name -	Snadian EA			2
L.J.	oject maine :	York II Sta	tion Building	-	
	Project No. :	33015347	aon Danonig		(
		55015511			
	Area =	0.1	lha		
	"C" =	0.9			
	AC=	0.09			
	Tc =	7.0	min		
Time	Increment =	5.0	min		
Re	lease Rate =	4.2	1/s	North York	2vr
М	ax.Storage =	11	m3	2=	652.8
			1	h-	4.00
				c=	0.786
				- 1	
Time	Rainfall	Storm	Runoff	Released	Storage
	Intensity	Runoff	Volume	Volume	Volume
(min)	(mm/hr)	(1/s)	(m3)	(m3)	(m3)
7.0	99.1	24.80	10.4	1.8	8.7
12.0	73.8	18.48	13.3	3.0	10.3
17.0	59.6	14.92	15.2	4.3	10.9
22.0	50.4	12.62	16.7	5.5	11.1
27.0	43.9	10,99	17.8	6.8	11.0
32.0	39.0	9.77	18.8	8.1	10.7
37.0	35.2	8.82	19.6	9.3	10.3
42.0	32.2	8.06	20.3	10.6	9.7
47.0	29.7	7.43	20.9	11.8	9.1
52.0	27.6	6.90	21.5	13.1	8.4
57.0	25.8	6.45	22.1	14.4	7.7
62.0	24.2	6.07	22.6	15.6	6.9
67.0	22.9	5.73	23.0	16.9	6.1
72.0	21.7	5.43	23.5	18.1	5.3
77.0	20.6	5.16	23.9	19.4	4.5
82.0	19.7	4.93	24.2	20.7	3.6
87.0	18.8	4.71	24.6	21.9	2.7
92.0	18.1	4.52	24.9	23.2	1.8
97.0	17.4	4.34	25.3	24.4	0.8
102.0	16.7	4.18	25.6	25.7	-0.1
107.0	16.1	4.03	25.9	27.0	-1.1
112.0	15.6	3.89	26.2	28.2	-2.1
117.0	15.1	3.77	26.4	29.5	-3.0
122.0	14.6	3.65	26.7	30.7	-4.0

		2
al Method		
	<i>©</i> .	
		,
North York	25yr	
a=	1082	
b=	2.00	
c=	0.771	
		1
Released	Storage	
Volume	Volume	
(m3)	(m3)	
1.8	19.1	
3.0	22.5	
4.3	24.2	
5.5	25.3	
6.8	25.9	
8.1	26.2	
9.3	26.3	<<<<
10.6	26.3	
11.8	26.1	
13.1	25.9	
14.4	25.6	
15.6	25.2	
16.9	24.7	
18.1	24.2	
19.4	23.7	
20.7	23.1	
21.9	22.5	
23.2	21.8	
24.4	21.1	
23.7	20.4 10 7	
28.2	19.7	
29.5	18.2	
30.7	17.5	

		19		10		
		Modi	fied Ratio	nal Method		
Pr	oject Name :	Spadian EA				1
		York U Stat	ion Building	3	· · · · · · · · · · · · · · · · · · ·	1
	Project No. :	33015347]
	2					
	Area =	0.1	ha			
	"C" =	0.9				
	AC=	0.09				
	Tc =	7.0	min			
Time	Increment =	5.0	min			a
Re	elease Rate =	4.2	l/s	North York	100yr	
M	ax.Storage =	35	m3	a=	1334	
				b=	2.00	
				c=	0.771	
	1					n
Time	Rainfall	Storm	Runoff	Released	Storage	
	Intensity	Runoff	Volume	Volume	Volume	
(min)	(mm/hr)	(l/s)	(m3)	(m3)	(m3)	
7.0	245.2	61.34	25.8	1.8	24.0	
12.0	174.4	43.63	31.4	3.0	28.4	
17.0	137.8	34.48	35.2	4.3	30.9	
22.0	115.1	28.79	38.0	5.5	32.5	
27.0	99.5	24.88	40.3	6.8	33.5	
32.0	88.0	22.01	42.3	8.1	34.2	
37.0	79.1	19.80	44.0	9.3	34.6	
42.0	72.1	18.04	45.5	10.6	34.9	
47.0	66.4	16.61	46.8	11.8	35.0	
52.0	61.6	15.41	48.1	13.1	35.0	
57.0	57.5	14 30	49.2	14.4	34.0	
62.0	54.0	13.52	50.3	15.6	34.9	
67.0	51.0	12.76	51.3	16.9	34.4	
72.0	48.3	12.09	52.2	18.1	34.1	8
77.0	45.9	11.49	53.1	19.4	33.7	
82.0	43.8	10.96	53.9	20.7	33.3	
87.0	41.9	10.48	54.7	21.9	32.8	10
92.0	40.2	10.05	55.5	23.2	32.3	
97.0	38.6	9.66	56.2	24.4	31.8	
102.0	37.2	9.30	56.9	25.7	31.2	
107.0	35.8	8.97	57.6	27.0	30.6	
112.0	34.6	8.66	58.2	28.2	30.0	
117.0	33.5	8.38	58.8	29.5	29.3	
	Pr Time Re M Time (min) 7.0 12.0 17.0 22.0 27.0 32.0 37.0 42.0 47.0 52.0 57.0 62.0 67.0 52.0 57.0 62.0 67.0 72.0 77.0 82.0 87.0 92.0 97.0 102.0 0 77.0 102.0 0 77.0 102.0 1000	Project Name : Project No. : Area = "C" = AC= Tc = Time Increment = Release Rate = Max.Storage = Time (mm/hr) 7.0 245.2 12.0 174.4 17.0 137.8 22.0 115.1 27.0 99.5 32.0 88.0 37.0 79.1 42.0 72.1 47.0 66.4 52.0 51.0 77.0 45.9 82.0 31.0 77.0 45.9 82.0 41.9 92.0 40.2 97.0 38.6 102.0 37.2 107.0 35.8 112.0 34.6 117.0 33.5	Modii $Project Name : Spadian EAYork U StatProject No. : 33015347Area = 0.1"C" = 0.9AC = 0.9Tc = 7.0Time Increment = Release Rate = 4.2Max.Storage = 35Time Increment = Max.Storage = 35Time Increment = 100000000000000000000000000000000000$	Modified RatioProject Name :Spadian EA York U Station Building Project No. :33015347Area = 0.1 0.9 AC = 0.9 0.9 AC = na rc ="C" = 0.9 AC = 0.9 $AC =$ na Is Time Increment = 5.0 Tc = nin min min minRelease Rate = 4.2 $1/s$ l/s m3Time Increment = 5.0 Max.Storage = 35 Time Increment = 5.0 m3 min m3Time Increment = 5.0 m3 min 7.0 245.2 61.34 (M3) 25.8 12.0 174.4 (Ms) 43.63 (M3) 7.0 245.2 61.34 (M3) 25.8 12.0 174.4 (Ms) 43.63 (M3) 7.0 245.2 61.34 (M3) 25.8 12.0 174.4 (Ms) 43.63 (M3) 21.0 174.4 (Ma) 43.63 (M3) 22.0 115.1 (M3) 28.79 (M4.0) 22.0 115.1 (M3) 28.79 (M4.0) 22.0 115.1 (M3) 28.79 (M4.0) 22.0 61.6 (M3) 15.41 (M4.0) 42.0 (M2.1) 72.1 (M3) 44.0 (M2.2) 42.0 (M2.1) 18.04 (M4.0) 42.0 (M2.1) 18.04 (M3) 45.0 (M3.2) 61.6 (M3) 47.0 (M4.0) 16.61 (M4.8) 57.0 (M3.6) 12.76 (M3.8) 70.0 (M3.8) 12.99 (M3.8)<	Modified Rational Method Spadian EA York U Station Building Project No.: 33015347 Area 0.9 AC= 0.9 AC= 0.09 AC= 0.09 Time Increment = 4.2 Max.Storage = 35 min min Release Rate = 4.2 Max.Storage = 35 min (min) Intensity Runoff Rainfall Storm Runoff Volume (min) (m/hr) 17.0 137.8 34.48 35.2 12.0 174.4 137.8 34.48 32.0 88.0 22.0 115.1 28.79 38.0 32.0 88.0 32.0 88.0 32.0 88.0 32.0 18.04 45.5 10.6 47.0 66.4	Modified Rational Method Spadian EA York U Station Building Project No. : 33015347 Area = 0.1 0.0 Area = 0.1 na North York 100yr Area = 0.1 nin North York 100yr Max.Storage = 0.1 North York 100yr Max.Storage = 0.1 North York 100yr Max.Storage 133 Na a= 1334 b_{0} Tre = 7.0 min min Tre = 7.0 min Tre = 7.0 min Tre = 1334 Jre = 1334 Quarter to the performant of the perfo

T		Inoria Contraction	neu Kati(mai method	
Pr	oject Name :	Spadian EA			······································
5	Droiget Ma	Steeles East	Parking Lo	t	
	Project No. :	55015547			
	Aron -	5.0	l.		
		0.0	lia		
		1.68			
	Tc =	7.0	min		
Time	Increment =	5.0	min		
Re	lease Rate =	335.7	1/s	North York	2vr
M	ax.Storage =	450	m3	a-	652.8
			Juno -	a- b-	4.00
				c=	0.786
				-1	0.700
Time	Rainfall	Storm	Runoff	Released	Storage
	Intensity	Runoff	Volume	Volume	Volume
(min)	(mm/hr)	(l/s)	(m3)	(m3)	(m3)
7.0	99.1	1289.84	541.7	141.0	400.7
12.0	73.8	960.80	691.8	241.7	450.1
17.0	59.6	775.90	791.4	342.4	449.0
22.0	50.4	656.00	865.9	443.1	422.8
27.0	43.9	571.30	925.5	543.8	381,7
32.0	39.0	507.95	975.3	644.5	330.7
37.0	35.2	458.59	1018.1	745.3	272.8
42.0	32.2	418.93	1055.7	846.0	209.7
47.0	29.7	386.30	1089.4	946.7	142.7
52.0	27.6	358.92	1119.8	1047.4	72.4
57.0	25.8	335.58	1147.7	1148.1	-0.4
62.0	24.2	315.43	1173.4	1248.8	-75.4
67.0	22.9	297.84	1197.3	1349.5	-152.2
72.0	21.7	282.33	1219.6	1450.2	-230.6
77.0	20.6	268.54	1240.6	1550.9	-310.3
82.0	19.7	256.19	1260.4	1651.6	-391.2
87.0	18.8	245.06	1279.2	1752.4	-473.2
92.0	18.1	234.97	1297.0	1853.1	-556.0
97.0	17.4	225.77	1314.0	1953.8	-639.8
102.0	16.7	217.36	1330.2	2054.5	-724.2
107.0	16.1	209.63	1345.8	2155.2	-809.4
112.0	15.6	202.49	1360.7	2255.9	-895.2
117.0	15.1	195.89	1375.1	2356.6	-981.5

		nal Method	fied Ratio	Modi		
				Spadian EA	oject Name :	Pro
			Parking Lot	Steeles East		
				33015347	Project No. :	I
			1			
			ha	5.2	Area =	
				0.9	"C" =	
			3	4.68	AC=	
			min	7.0	Tc =	
,			min	5.0	Increment =	Time
12 - 51	5yr	North York	1/s	494.4	lease Rate =	Re
	840.7	a=	m3	599	ax.Storage =	Ma
	3.00	b=				
	0.779	c=				
	Storage	Released	Runoff	Storm	Rainfall	Time
	Volume	Volume	Volume	Runoff	Intensity	
	(m3)	(m3)	(m3)	(1/s)	(mm/hr)	(min)
	(III.5)	207.6	764.0	1910 41	120.9	7.0
	536.5	207.0	704.2	1619.41	139.0	7.0
<<<<	599.2	356.0	955.2	1326.65	102.0	12.0
	577.2	504.3	1081.5	1060.30	81.5	17.0
	523.7	652.6	1176.3	891.12	68.5	22.0
-	451.5	800.9	1252.5	773.13	59.4	27.0
	367.2	949.2	1316.4	685.65	52.7	32.0
	274.2	1097.6	1371.8	617.91	47.5	37.0
	174.7	1245.9	1420.6	563,74	43.3	42.0
	70.3	1394.2	1464 5	51932	30 Q	47.0
	38.2	1542.5	1504.3	482.16	37.1	52.0
	-30.4	1600.8	15/0.0	450.56	34.6	57.0
	-149.9	1090.8	1574 0	400.00	225	62.0
	-204.4	1039.2	1574.8	443.34	30.7	67.0
	-501.2	2135.8	1635.8	378.67	29.1	72.0
	-620.5	2284.1	1663.7	360.10	27.7	77.0
	-742.5	2432.4	1690.0	343.49	26.4	82.0
	-865.8	2580.8	1714.9	328.53	25.3	87.0
	-990.4	2729.1	1738.7	314.98	24.2	92.0
The second se	-1116.0	2877.4	1761.4	302.64	23.3	97.0
	~1242.6	3025.7	1783.1	291.36	22.4	102.0
	-1370.1	3174.0	1803.9	280.99	21.6	107.0
	-1498.4	3322.4	1824.0	271.42	20.9	112.0
	-1627.4	3470.7	1843.3	262.57	20.2	117.0

		Modi	fied Ratio	onal Method		
Pro	ject Name :	Spadian EA]
		Steeles East	Parking Lo	t	2	
I	Project No. :	33015347]
			1.			
	Area =	5.2	na			
	"C" =	0.9				
	AC=	4.68				
m	Tc =	7.0	min			
Time	increment =	5.0	min			1
Re	lease Rate =	690.8	l/s	North York	25yr	
Ma	ax.Storage =	828	m3	a=	1082	2
				- b=	2.00	
				c=	0.771	
Time	Rainfall	Storm	Rupoff	Released	Storage	1
THIC	Kannan	Storm	Runon	Released	Siciage	
	Intensity	Runoff	Volume	Volume	Volume	
(min)	(mm/hr)	(l/s)	(m3)	(m3)	(m3)	
7.0	198.8	2587.00	1086.5	290.1	796.4	
12.0	141.4	1840.15	1324.9	497.4	827.5	<<<
17.0	111.8	1454.12	1483.2	704.6	778.6	
22.0	93.3	1214.44	1603.1	911.9	691.2	
27.0	80.7	1049.56	1700.3	1119.1	581.2	1
32.0	71.4	928.43	1782.6	1326.3	456.2	1
37.0	64.2	835.23	1854.2	1533.6	320.6	
42.0	58.5	761.05	1917.9	1740.8	177.0	
47.0	53.8	700.45	1975.3	1948.1	27.2	
52.0	50.0	649.89	2027.7	2155.3	-127.6	
57.0	46.7	607.00	2076.0	2362.5	-286.6	
62.0	43.8	570.10	2120.8	2569.8	-449.0	
67.0	41.3	537.98	2162.7	2777.0	-614.3	
72.0	39.2	509.73	2202.0	2984.3	-782.2	
77.0	37.3	484.67	2239.2	3191.5	-952.3	
82.0	35.5	462.27	2274.4	3398.7	-1124.4	
87.0	34.0	442.12	2307.9	3606.0	-1298.1	
92.0	32.6	423.87	2339.8	3813.2	-1473.4	
97.0	31.3	407.27	2370.3	4020.5	-1650.1	
102.0	30.1	392.09	2399.6	4227.7	-1828.1	
107.0	29.1	378.15	2427.7	4434.9	-2007.2	
112.0	28.1	365.30	2454.8	4642.2	-2187.4	
117.0	27.2	353.40	2480.9	4849.4	-2368.5	
122.0	26.3	342.37	2506.1	5056.7	-2550.5	

		nal Method	fied Ratio	Modi	01	
		2		Spadian EA	oject Name :	Pro
			Parking Lo	Steeles East		
			·····	33015347	Project No. :	1
			1			
			ha	5.2	Area =	
			с. 	0.9	"C" =	
				4.68	AC=	
			min	7.0	Tc =	10000-01
n			min	5.0	Increment =	Time
	100yr	North York	1/s	851.7	lease Rate =	Re
	1334	a=	m3	1020	ax.Storage =	Ma
	2.00	b=				
	0.771	c=				
3						
	Storage	Released	Runoff	Storm	Rainfall	Time
	Volume	Volume	Volume	Runoff	Intensity	
	(m3)	(m3)	(m3)	(1/s)	(mm/hr)	(min)
	981.9	357.7	1339.6	3189.52	245.2	7.0
<<<	1020.3	613.2	1633.5	2268.72	174.4	12.0
	959.9	868.7	1828.6	1792.78	137.8	17.0
	852.2	1124.2	1976.4	1497.28	115.1	22.0
	716.5	1379.8	2096.3	1294.01	99.5	27.0
	562.5	1635.3	2197.7	1144.66	88.0	32.0
	395.3	1890.8	2286.1	1029.76	79.1	37.0
	218.2	2146.3	2364.5	938.31	72.1	42.0
	33.5	2401.8	2435.3	863.59	66.4	47.0
	-157.4	2657.3	2499 9	801.26	61.6	52.0
	-353.4	2912.8	2559.4	748 38	57.5	57.0
	-553.6	3168.3	2614.7	702.88	54.0	62.0
	-757.5	3423.8	2666.4	663.28	51.0	67.0
	-964.5	3679.3	2714.9	628.45	48.3	72.0
	-1174.2	3934.9	2760.7	597.55	45.9	77.0
	-1386.3	4190.4	2804.1	569.94	43.8	82.0
	-1600.5	4445.9	2845.4	545.09	41.9	87.0
	-1816.7	4701.4	2884.7	522.59	40.2	92.0
	-2034.5	4956.9	2922.4	502.12	38.6	97.0
	-2253.9	5212.4	2958.5	483.41	37.2	102.0
	-2474.8	5467.9	2993.1	466.22	35.8	107.0
	-2696.9	5723.4	3026.5	450.37	34.6	112.0
	-2920.2	5978.9	3058.7	435.71	33.5	117.0

I			Modif	ied Ratio	nal Method		
	Pro	ject Name :	Spadian EA				
			Steeles West	t Parking Lot			
	F	Project No. :	33015347				
1							
		Area =	4.9	ha			
		"C" =	0.9	с;			
		AC=	4.41	5			
		Tc =	7.0	min			
	Time	Increment =	5.0	min			
	Re	lease Rate =	335.2	l/s	North York	2yr	
	Ma	x.Storage =	411	m3	a=	652.8	
					b=	4.00	
					c=	0.786	
ĺ	Time	Rainfall	Storm	Runoff	Released	Storage	
		Intensity	Runoff	Volume	Volume	Volume	
1	(min)	(mm/hr)	(l/s)	(m3)	(m3)	(m3)	
	7.0	99.1	1215.43	510.5	140.8	369.7	
	12.0	73.8	905.37	651.9	241.3	410.5	<<<<
	17.0	59.6	731.14	745.8	341.9	403.9	
	22.0	50.4	618.15	816.0	442.5	373.5	
	27.0	43.9	538.34	872.1	543.0	329.1	a a
	32.0	39.0	478.64	919.0	643.6	275.4	
	37.0	35.2	432.13	959.3	744.1	215.2	
	42.0	32.2	394,76	994.8	844.7	150.1	
	47.0	29.7	364.01	1026.5	945,3	81.2	
2	52.0	27.6	338.21	1055.2	1045.8	9,4	
-	57.0	25.8	316.22	1081.5	1146.4	-64.9	
	62.0	24.2	297.24	1105.7	1246.9	-141.2	
	67.0	22.9	280.66	1128.2	1347.5	-219.3	
	72.0	21.7	266.04	1149.3	1448.1	-298.8	
	77.0	20.6	253.04	1169.1	1548.6	-379.6	
H 22	82.0	19.7	241.41	1187.7	1649.2	-461.5	
	87.0	18.8	230.92	1205.4	1749.7	-544.4	
	92.0	18.1	221.41	1222.2	1850.3	-628.1	
	97.0	17.4	212.75	1238.2	1950.9	-712.7	
	102.0	16.7	204.82	1253.5	2051.4	-797.9	
	107.0	16.1	197.53	1268.2	2152.0	-883.8	
	112.0	15.0	190.81	1282.2	2454.5	-970.3	
	122.0	13.1	178.80	1308.8	2453.7	-1037.5	
	122.0	1.14.0	178.80	1.000.0	L 2+33.1	-1144.0	<u> </u>

51 O.17			Modi	fied Ratio	nal Method	******	
	Pro	oject Name :	Spadian EA]
3			Steeles Wes	t Parking Lo	t		
]	Project No. :	33015347				
			_	1			
		Area =	4.9	ha			
		"C" =	0.9				
		AC=	4.41				
		Tc =	7.0	min			
	Time	Increment =	5.0	min			7 1
	Re	lease Rate =	465.8	l/s	North York	5yr	
	Ma	ax.Storage =	565	m3	a=	840.7	
					b=	3.00	
					c=	0.779	
							สิ
	Time	Rainfall	Storm	Runoff	Released	Storage	
		Intensity	Runoff	Volume	Volume	Volume	
	(min)	(mm/hr)	(l/s)	(m3)	(m3)	(m3)	
	7.0	139.8	1714.45	720.1	195.6	524.4	
	12.0	102.0	1250.11	900.1	335.4	564.7	<<<<
	17.0	81.5	999.13	1019.1	475.1	544.0	
	22.0	68.5	839.71	1108.4	614.9	493.6	
	27.0	59.4	728.53	1180.2	754.6	425.6	
	32.0	52.7	646.09	1240.5	894.3	346.2	
	37.0	47.5	582.26	1292.6	1034.1	258.5	
	42.0	43.3	531.22	1338.7	1173.8	164.9	
	42.0	20.0	490.26	1320.0	1212.6	66.4	
	47.0	37.7	407.30	1380.0	1313.0	00.4	
2	52.0	- 31.1	434.34	1417.5	1455.5	-33.8	
	57.0	54.0 22.5	424.57	1452,0	1593.0	-141.0	
	02.0 67.0	30.7	398.90	1483.9	1/32.8	-248.9	
	72.0	29.1	356.82	1515.0	2012.3	-338.9	
	77.0	27.7	339.33	1567.7	2152.0	-584.3	
	82.0	26.4	323.67	1592.5	2291.7	-699.3	
	87.0	25.3	309.58	1616.0	2431.5	-815.5	
	92.0	24.2	296.81	1638.4	2571.2	-932.8	
	97.0	23.3	285.18	1659.8	2711.0	-1051.2	
	102.0	22.4	274.55	1680.2	2850.7	-1170.5	
	107.0	21.6	264.78	1699.9	2990.4	-1290.6	
	112.0	20.9	255.76	1718.7	3130.2	-1411.4	
	117.0	20.2	247.42	1736.9	3269.9	-1533.0	
	122.0	19.6	239.68	1754.5	3409.7	-1655.2	

		Modi	fied Ratio	nal Method		
Pr	oject Name :	Spadian EA				1
		Steeles Wes	t Parking Lo	t]
1	Project No. :	33015347]
	Area =	4.9	ha			
	"C" =	0.9				
	AC=	4.41			an an an an ann a	
	Tc =	7.0	min			
Time	Increment =	5.0	min			
Re	lease Rate =	650.9	1/s	North York	25yr	
M	ax.Storage =	780	m3	a=	1082	
			13	b=	2.00	
				c=	0.771	
				1		U U
Time	Rainfall	Storm	Runoff	Released	Storage	1
	Intensity	Runoff	Volume	Volume	Volume	
(min)	(mm/hr)	(1/s)	(m3)	(m3)	(m3)	
7.0	198.8	2437.75	1023.9	273.4	750.5	
12.0	141.4	1733.99	1248.5	468.6	779.8	<<<
17.0	111.8	1370.22	1397.6	663.9	733.7	
22.0	93.3	1144.37	1510.6	859.2	651.4	
27.0	80.7	989.01	1602.2	1054.5	547.7	
32.0	71.4	874.86	1679.7	1249 7	430.0	
37.0	64.2	787.05	1747.2	1445.0	302.2	
42.0	58,5	717.15	1807.2	1640.3	166.9	
47.0	53.8	660.04	1861.3	1835.5	25.8	
52.0	50.0	612 40	1910.7	2030.8	-120.1	
57.0	46.7	571.98	1056.2	2000.0	-120.1	
62.0	43.8	537.21	1998.4	2421.3	-209.9	
67.0	41,3	506.94	2037.9	2616.6	-5787	
72.0	39.2	480.32	2075.0	2811.9	-736.9	
77.0	37.3	456.71	2110.0	3007.2	-897.2	
82.0	35.5	435.60	2143.2	3202.4	-1059.3	
87.0	34.0	416.61	2174.7	3397.7	-1223.0	
92.0	32.6	399.42	2204.8	3593.0	-1388.2	
97.0	31.3	383.77	2233.6	3788.2	-1554.7	
102.0	30.1	369.47	2261.1	3983.5	-1722.4	
107.0	29.1	356.33	2287.7	4178.8	-1891.1	
112.0	28.1	344.22	2313.2	4374.0	-2060.9	
117.0	27.2	333.02	2337.8	4569.3	-2231.6	
1 4.4.0	20.3	344.01	4.301.3	4704.0	-2403.1	

		Mod	ified Ratio	nal Method		
Pr	roject Name	: Spadian E/		Jaar Meetiiou		٦
	J	Steeles We	st Parking L	of		-
	Project No.	: 33015347				-
						4
	Area =	4.9	ha			
	"C" =	0.9				
	AC=	4.41				
	Tc =	7.0	min			
Time	Increment =	5.0	min			
Re	elease Rate =	802.5	l/s	North York	100yr	1
М	ax.Storage =	961]m3	a:	= 1334	j
			-	b	= 2.00	
		0		C=	0.771	
						0
Time	Rainfall	Storm	Runoff	Released	Storage]
	Intensity	Runoff	Volume	Volume	Volume	
(min)	(mm/hr)	(l/s)	(m3)	(m3)	(m3)	
7.0	245.2	3005.51	1262.3	337.1	025.2	
12.0	174.4	2137.84	1539.2	577.8	061.4	
17.0	137.8	1689 35	1723 1	919.6	901.4	ecc.
22.0	115.1	1410.00	1062.4	1050.0	904.6	
27.0	00.5	1410.90	1002.4	1059.3	803.1	10
27.0	99.5	1219.30	1975.4	1300.1	675.3	
52.0	88.0	1078.62	2071.0	1540.8	530.2	
37.0	79.1	970.35	2154.2	1781.6	372.6	
42.0	72.1	884.17	2228.1	2022.3	205.8	
47.0	66.4	813.76	2294.8	2263.1	31.8	
52.0	61.6	755.03	2355.7	2503.8	-148.1	
57.0	57.5	705.20	2411.8	2744.6	-332.8	
62.0	54.0	662.33	2463.9	2985.3	-521.4	
67.0	51.0	625.01	2512.5	3226.1	-713.5	
72.0	48.3	592.19	2558.3	3466.8	-908.5	
77.0	45.9	563.08	2601.4	3707.6	-1106.1	
82.0	43.8	537.06	2642.3	3948.3	-1306.0	
87.0	41.9	513.64	2681.2	4189.1	-1507.8	
92.0	40.2	492.44	2718.3	4429.8	-1711.5	
102.0	38.0	473.16	2753.8	4670.6	-1916.8	
107.0	35.8	433.52	2787.8	4911.3	-2123.5	×
112.0	34.6	424 39	2820.5	5152.1	-2331.6	
117.0	33.5	410.58	2882.2	5633.6	-2540.9	
122.0	32.4	397.75	2911.5	5874 3	-2/31.3	

*		IVIOD	mea Katio	onal Method		
Pr	oject Name :	Spadian EA				-
	Decident Ma	Steeles We	st Bus Termi	nal / Station buil	d	4
	Project No. :	33013347				J .
	Area =	2.1	ha			
	"C" =	0.9				
	AC=	1.89	1			
	Tc =	7.0	min	15		
Time	Increment =	5.0	min			
Re	elease Rate =	143.7	1/s	North York	2vr	7
М	ax.Storage =	176	m3	a=	652.8	
	0	L	1	h=	4.00	
				c=	0.786	
				- 1		4.
Time	Rainfall	Storm	Runoff	Released	Storage	1
	Intensity	Runoff	Volume	Volume	Volume	
(min)	(mm/hr)	(l/s)	(m3)	(m3)	(m3)	
7.0	99.1	520.90	218.8	60.4	158.4	
12.0	73.8	388.01	279.4	103.5	175.9	<<<<
17.0	59.6	313.34	319.6	146.6	173.0	
22.0	50.4	264.92	349.7	189.7	160.0	
27.0	43.9	230.72	373.8	232.8	141.0	
32.0	39.0	205.13	393.9	275.9	117.9	
37.0	35.2	185.20	411.1	319.0	92.1	
42.0	32.2	169.18	426.3	362.1	64.2	
47.0	29.7	156.00	439.9	405.2	34.7	
52.0	27.6	144.95	452.2	448.3	3.9	
57.0	25.8	135.52	463.5	491.5	-28.0	
62.0	24.2	127.39	473.9	534.6	-60.7	
67.0	22.9	120.28	483.5	577.7	-94.1	
72.0	21.7	114.02	492.6	620.8	-128.2	
77.0	20.6	108.45	501.0	663.9	-162,9	
82.0	19.7	103.46	509.0	707.0	-198.0	
87.0	18.8	98.96	516.6	750.1	-233.5	
92.0	18.1	94.89	523.8	793.2	-269.4	
97.0	17.4	91.18	530.7	836.3	-305.7	
102.0	16.7	87.78	537.2	879.4	-342.2	
107.0	16.1	84.66	543.5	922.6	-379.1	
112.0	15.6	81.78	549.5	965.7	-416.1	
117.0	15.1	79.11	555.3	1008.8	-453.4	
122.0	14.6	76.63	560.9	1051.9	-491.0	

		Mod	ified Ratio	onal Method		
Р	roject Name	: Spadian E	4	-		٦
		Steeles We	est Bus Term	inal / Station bu	ild	1
	Project No.	: 33015347				
			-		45 P.3	
	Area =	= 2.1	ha			
	"C" =	- 0.9				
	AC=	= 1.89				
TT:	Тс =	7.0	min			
Time	= increment =	5.0	min			
R	elease Rate =	199.6	1/s	North York	5yr]
N	1ax.Storage =	242	Jm3	a=	= 840.7]
				b=	= 3.00]
				C=	=0.779]
	· · · · · · · · · · · · · · · · · · ·					
Time	Rainfall	Storm	Runoff	Released	Storage]
	Intensity	Runoff	Volume	Volume	Volume	
(min)	(mm/hr)	(l/s)	(m3)	(m3)	(m3)	
7.0	139.8	734.76	308.6	83.8	224.8	i.
12.0	102.0	535.76	385.7	143.7	242.0	
17.0	81.5	428.20	436.8	203.6	233.2	
22.0	68.5	359.88	475.0	263.5	255.2	
27.0	59.4	312.23	505.8	322.4	102.5	
32.0	52.7	276.90	531.6	323.4	182.5	
37.0	47.5	040.54	551.0	363.2	148.4	
31.0	47.5	249.34	554.0	443.1	110.9	
42.0	43.3	227.66	573.7	503.0	70.7	
47.0	39.9	209.72	591.4	562.9	28.6	
52.0	37.1	194.72	607.5	622.8	-15.2	
57.0	34.6	181.96	622.3	682.6	-60.3	
62.0	32.5	170.96	636,0	742.5	-106.6	
67.0	30.7	161.37	648.7	802.4	-153.7	
72.0	29.1	152.92	660.6	862.3	-201.6	
77.0	27.7	145.43	671.9	922.2	-250.3	
82.0	26.4	138.72	682.5	982.0	-299.5	
87.0	25.3	132.68	692.6	1041.9	-349.3	
92.0	24.2	127.20	702.2	1101.8	-399.6	
97.0	23.3	122.22	711.3	1161.7	-450.3	
102.0	22.4	117.66	720.1	1221.6	-501.5	
107.0	21.6	113.48	728.5	1281.4	-552.9	
112.0	20.9	109.61	736.6	1341.3	-604.7	
117.0	20.2	100.04	744.4	1401.2	-656.8	

		Modi	fied Ratio	nal Method	**************************************	
Pr	oject Name :	Spadian EA				1
		Steeles Wes	West Bus Terminal / Station build			
Project No. : 33015347				····		
	,		Minani			1
	Area =	2.1	ha	a 2		
	"C" =	0.9				
	AC=	1.89				
	Tc =	7.0	min			
Time	Increment =	5.0	min			
Re	lease Rate =	279.0	1/s	North York	25уг	1
M	ax.Storage =	334	m3	. <u></u> a=	1082	
		L	Ŭ.	. h=	2.00	
				c=	0.771	
				5	0.771	
Time	Rainfall	Storm	Runoff	Released	Storage	
	Intensity	Runoff	Volume	Volume	Volume	
(min)	(mm/hr)	(1/s)	(m3)	(m3)	(m3)	
7.0	198.8	1044 75	438.8	117.2	321.6	
12.0	141.4	743 14	535.1	200.0	324.0	
17.0	111.4	507.74	\$00.0	200.5	334.2	
22.0	00.0	367.24	399.0	284,6	314,4	
22.0	93.3	490.45	647.4	368.3	279.1	
27.0	80.7	423.86	686.7	452.0	234.7	
32.0	71.4	374.94	719.9	535.7	184.2	1
37.0	64.2	337.31	748.8	619.4	129.4	
42.0	58.5	307.35	774.5	703.1	71.4	
47.0	53.8	282.87	797.7	786.8	10.9	
52.0	50.0	262.46	818.9	870.5	-51.6	
57.0	46.7	245.14	838.4	954.2	-115.8	
62.0	43.8	230.23	856.5	1037.0	1914	
67.0	41.3	217.26	873.4	1121.6	-248.2	
72.0	39.2	205.85	889.3	1205 3	-316.0	
77.0	37.3	195.73	904.3	1289.0	-384.7	
82.0	35.5	186.69	918.5	1372.7	-454.2	
87.0	34.0	178.55	932.0	1456.4	-524.4	
92.0	32.6	171.18	944.9	1540.1	-595.2	
97.0	31.3	164.47	957.2	1623.8	-666.5	
102.0	30.1	158.34	969.1	1707.5	-738.4	
107.0	29.1	152.71	980.4	1791.2	-810.8	
112.0	28.1	147.52	991.4	1874.9	-883.5	
117.0	27.2	142.72	1001.9	1958.6	-956.7	
122.0	26.3	138.26	1012.1	2042.3	-1030.2	1

